Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Equivalence class
Recent contents
View information
Top users
Description
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation) defined on them, then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a and b belong to the same equivalence class if, and only if, they are equivalent.
Formally, given a set S and an equivalence relation ~ on S, the equivalence class of an element a in S, denoted by
[
a
]
{\displaystyle [a]}
, is the set
{
x
∈
S
∣
x
∼
a
}
{\displaystyle \{x\in S\mid x\sim a\}}
of elements which are equivalent to a. It may be proven, from the defining properties of equivalence relations, that the equivalence classes form a partition of S. This partition—the set of equivalence classes—is sometimes called the quotient set or the quotient space of S by ~, and is denoted by S / ~.
When the set S has some structure (such as a group operation or a topology) and the equivalence relation ~ is compatible with this structure, the quotient set often inherits a similar structure from its parent set. Examples include quotient spaces in linear algebra, quotient spaces in topology, quotient groups, homogeneous spaces, quotient rings, quotient monoids, and quotient categories.
View More On Wikipedia.org
Forums
Back
Top