Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Exponents
Recent contents
View information
Top users
Description
Exponentiation is a mathematical operation, written as bn, involving two numbers, the base b and the exponent or power n, and pronounced as "b raised to the power of n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:
b
n
=
b
×
⋯
×
b
⏟
n
times
.
{\displaystyle b^{n}=\underbrace {b\times \dots \times b} _{n\,{\textrm {times}}}.}
The exponent is usually shown as a superscript to the right of the base. In that case, bn is called "b raised to the nth power", "b raised to the power of n", "the nth power of b", "b to the nth power", or most briefly as "b to the nth".
One has b1 = b, and, for any positive integers m and n, one has bn ⋅ bm = bn+m. To extend this property to non-positive integer exponents, b0 is defined to be 1, and b−n (with n a positive integer and b not zero) is defined as 1/bn. In particular, b−1 is equal to 1/b, the reciprocal of b.
The definition of exponentiation can be extended to allow any real or complex exponent. Exponentiation by integer exponents can also be defined for a wide variety of algebraic structures, including matrices.
Exponentiation is used extensively in many fields, including economics, biology, chemistry, physics, and computer science, with applications such as compound interest, population growth, chemical reaction kinetics, wave behavior, and public-key cryptography.
View More On Wikipedia.org
Forums
Back
Top