Fermi-dirac statistics

In quantum statistics, a branch of physics, the Fermi–Dirac distribution is a probability distribution of particles over energy states in systems consisting of many identical particles that obey the Pauli exclusion principle. It is named after Enrico Fermi and Paul Dirac, each of whom discovered the method independently (although Fermi defined the statistics earlier than Dirac).Fermi–Dirac (F–D) statistics apply to identical and non-distinguishable particles with half-integer spin in a system with thermodynamic equilibrium. Additionally, the particles in this system are assumed to have negligible mutual interaction. That allows the multi-particle system to be described in terms of single-particle energy states. The result is the F–D distribution of particles over these states which includes the condition that no two particles can occupy the same state; this has a considerable effect on the properties of the system. F–D statistics apply to particles that are called fermions. It is most commonly applied to electrons, a type of fermion with spin 1/2. Fermi–Dirac statistics are a part of the more general field of statistical mechanics and use the principles of quantum mechanics.
A counterpart to F–D statistics is Bose–Einstein statistics, which apply to identical and non-distinguishable particles with an integer spin (0, 1, 2, etc.). These particles, such as photons (spin 1) and the Higgs bosons (spin 0), are called bosons. Contrary to fermions, bosons do not follow the Pauli exclusion principle, meaning that more than one boson can simultaneously be in the same quantum configuration.
In classical physics, Maxwell–Boltzmann statistics is used to describe particles that are identical and distinguishable.

View More On Wikipedia.org
Back
Top