Homework Statement
Find the densities of states 0.08 eV above the conduction band edge and 0.08 eV below the valence band edge for germanium.
Find the volume density of states (i.e. number of states per unit volume) with energies between the conduction band edge and 0.4 eV above the conduction...
Homework Statement
Part 1) Use the fermi dirac probability function for t=150k, t=300k, and t=600k to fill in the table below.
Part 2) Also show a sample calculation for (e-ef)=0.06eV and T=300k.
Part 3)(Same as part 2?) Calculate the probabilities of a state at E -EF =0.06 eV being empty for...
I'm making some theoretical modelling for a system, which is effectively 1d in the sense that it is much longer the wide. This means (like in model for quantized conductance) that the energy bands are parabolas with a spacing equal to the energy difference between the ground state, first excited...
Can someone give me a clear, nonambiguous definition of the fermi level in a semiconductor? Is it the energy of the highest occupied state, the chemical potential at T=0 or what?
I don't think it is the first since the fermi level is typically put midway between the conduction and valence band...
Homework Statement
[/B]
Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to a 12 angstroms. Determine the Fermi energy level at T 0 K.
Homework Equations
E = [(h_bar*pi)2/(2*m*a2)]*(nx2 + ny2 + nz2)
The Attempt at a Solution
Tried using EF...
Normally, you think about SM forces being conveyed by gluons, weak force gauge bosons, or photons (ignore that troublesome gravity thing for the moment) between point particles.
There is also a property of fermions (particles with total angular momentum Q=1/2, 3/2, etc.) that they can't occupy...
I know we can shift the fermi level by doping the material with other elements. In case of semiconductors doping with the pentavalent or trivalent will change the fermi level. But my question is ''can we shift the fermi level, without altering the position of valence band and conduction band?"...
I encounter contradictive informations about this issue which is supposed to define "real noble metals"
is this statement correct at absolute zero or at any temperature?
Does it include ds hybridizations?
Today's APOD shows an animated visualization of a gamma ray flare detected by
The Fermi Space Telescope. The video says, "each circle represents one gamma ray"
That language suggests single photon detection. Is that correct?
I'm using data from the FERMI SMARTS website, which gives the emissions of blazers. The data has been calibrated using differential photometry (dividing by the average magnitude of a number of reference stars.)
"The raw photometry of comparison stars in the field of the blazar was calibrated...
Hi all,
I recently installed ubuntu on my pc and I am trying to run the Fermi software provided by NASA (http://fermi.gsfc.nasa.gov/ssc/data/analysis/software/). I believe I did all the installation steps right but I am having trouble starting the software. If you are familiar with this...
Hi, a question please:
Do all metallic substances have an equal Fermi energy level (at a constant T) ?
If not, what will happen (before equilibrium) if one "fuses" together two bulks of metal with different Fermi
levels (as in a PN junction) ?
Since there's an abundance of energy states...
Do we have Bose like and Fermi like particles (fields) in 1+1 dimensional spacetime, Fermi like particles (fields) that obey the Pauli Exclusion Principle?
For what space dimensions does the Pauli Exclusion Principle operate?
Thanks for any help!
Hi everybody, I was doing one asignment form class, I was tasked to prove that in one system, the arimetic mean of FD and BE distributions is equal to MB's distribution for undishtingable particles.
After doing the numbers I found out that it actually was, but I don't know why this happens, can...
Taken from my textbook:
My understanding is that:
One valence electron, 2 spin states -> Half-filled Brillouin zone
Seeking inspiration from "Nearly Free Electron Model": gaps open up at zone boundaries
States nearer to zone boundaries get pushed down in energy further
Since a fermi...
Hi. Look at the picture on 1:28 and 1:37 in this video:
How is it possible that the fermi-level is between two energy bands? The fermi level is defined as the highest energy level that contains an electron 50% of the time, so how is it possible for the fermi level being in an area that is...
I get that in a single particle of a metal, Fermi energy is defined at T = 0 as the maximum energy that electrons can reach.
I get that, but my book defines this concept called Fermi Temperature.
Is Fermi Temperature the temperature where electrons can reach the next empty energy band in...
I was wondering if the fermi level lies in the centre of the forbidden energy gap on pure semiconductors, then how does it (by definition) have a probability 1/2 of being filled? Shouldnt the fact that the fermi level lies in the forbidden, forbid the fermi level from having any probability of...
My understanding so far, critique appreciated:
[1] workfunction closely relates to reduction potential
Since workfunction is about boundaries and chemical reaction are mostly happening at the boundaries between bulk material, Workfunction should have a direct correlation with reduction...
We all see diagrams of the Fermi surface, the representation of the occupied states, but I can't seem to find a precise diagram of when an electric field is applied. Most diagrams show that the surface has moved, BUT they do not say in which direction relative to the electric field, and when...
Hi there,
I am new to electron theory, and have a question regarding fermi energy. The book I am reading plots the Fermi energy distribuiton function vs Energy for T=0 ( upper right graph in pcture) and for T not equal to zero. The book says that, when T does not equal zero, the decrease in the...
Adopted from my lecture notes, found it a little fishy:
Shouldn't ##\frac{dp}{dE} = \frac{E}{p}## given that ##p = \sqrt{E^2 - m^2}##. Then the relation should be instead:
\frac{dp}{dE} = \frac{E}{p} = \frac{E}{\sqrt{E^2 - m^2}}
Homework Statement
Calculate the Fermi energy, EF at 0K for potassium (atomic weight = 39, density = 860 kgm3).
Homework Equations
KF3 = 3π2n
Fermi Momentum ρ = h(bar)KF
The Attempt at a Solution :[/B]
For the first part:
Using: E = ρ2/ 2m
Can substitute Fermi momentum into that to get:
EF...
We consider the following beta decay:
^A_ZX \rightarrow ^A_{Z+1} Y + e^{-} + \nu_e
The Fermi golden rule is given by:
\Gamma = \frac{2\pi}{\hbar} |A_{fi}|^2 \frac{dN}{dE_f}
Reaction amplitude is given by ##A_{fi} = G_F M_{nucl} ## while density of states is given by ##dN = \frac{4 \pi...
Homework Statement
http://web.phys.ntnu.no/~kolausen/TFY4230/.oldExams/17_eksdes12.en.pdf
solution: http://web.phys.ntnu.no/~kolausen/TFY4230/.oldExams/18_losdes12.en.pdf
Look at problem 4a, formula (27) or the expression between (29) and (30).
My professor keeps converting sums into...
Homework Statement
Using the values of the density of states effective masses me* and mh* in table 5.1, find the position of the Fermi energy in intrinsic Si, Ge, and GaAs with respect to the middle of the bandgap (Eg/2).
Table 5.1 shows the following density of states effective masses me*/me...
Hi Guys, I read that the Fermi level of semiconductor, like germanium, is in-between the completely occupied upper band and conduction band, i.e. right in the gap. Why is that? shouldn't it have beed exactly the highest occupied level ?
Homework Statement
Hello, I am preparing a condensed matter exam and I was wondering if I could get some help on the following question from a past exam paper:
Show that for the free electron gas at zero temperature the Fermi energy is given by:
ε_{F}=\frac{\hbar^{2}}{2m}(3π^{2}N)^{2/3}
and...
Hi all. I'm working on a project that requires me to perform calculations in Fermi normal coordinates to certain orders, mostly 2nd order in the distance along the central worldline orthogonal space-like geodesics. In particular I need a rotating tetrad propagated along the central worldline...
hi guys, I wonder if I have fully understood the Fermi Dirac statistics properly, but I have a question on it regarding its application in the white dwarf research. I read the Fermi energy is applicable for T=0, now if the core of a white dwarf is too hot then how can we apply the Fermi Dirac...
Hi everyone!
I run the software ABINIT. It allows one to model solids as a plane-wave pseudopotential. Since it is based on first principles DFT, we are able to obtain the energies over many k-points. This would give us a band structure.
Besides this, the calculation would print out a...
I'm studying by Statistical Mechanics (Huang, page 180) but can't understand many things there, can anyone provide a good bibliography to study this? I don't understand what's an occupation number of a given momentum: if it's the number of particles with that given momentum, why can it only be 0...
I am reading section 8.5.1 of http://f3.tiera.ru/2/P_Physics/PS_Solid%20state/Giuliani%20G.,%20Vignale%20G.%20Quantum%20theory%20of%20the%20electron%20liquid%20%28CUP,%202005%29%28ISBN%200521821126%29%28799s%29_PS_.pdf (page 442 of the book, page 465 of the pdf). The author claims the...
Homework Statement
Consider a 3D gas of N non-interacting fermions in a volume V at temperature T << Ef / k.
Suppose that the particles in the energy range [0.25 Ef, 0.5 Ef] are suddenly removed.
Calculate the Fermi energy of the remaining particles after the system reaches its new thermal...
Homework Statement
Part (a): Plot fermi energy as a function of N
Part (b): Derive the density of states and find its value
Part (c): How many atoms reside at 20% of fermi energy? Estimate diameter of cloud
Part (d): For the same atoms without spin, why is the cloud much smaller...
For any system, different experimental tools are able to measure the Fermi surface or electron dispersion. Then, are these Fermi surface or dispersion the ultimate outcome of the combined effects from the existing interactions? In other words, should the detected motion of electrons have been...
what I've been told there is two groups of energy levels called the valence and the conduction band.
what is the fermi level for silicon?
how wide is the band gap for silicon?
All of the sources I have found for this online have been wildly unclear. Many use the phrase "Fermi energy" to refer to the "Fermi level" (which is emphatically not what I'm looking for; I want the Fermi energy as defined in this Wikipedia article: http://en.wikipedia.org/wiki/Fermi_energy )...
Hello
Homework Statement
From the expression of the partition function of a fermi dirac ideal gas
ln(Z)=αN + ∑ ln(1+exp(-α-βEr))
show that
S= k ∑ [ <nr>ln(<nr>)+(1-<nr>)ln(1-<nr>)
Homework Equations
S=k( lnZ+β<E>)
<nr>=-1/β ∂ln(Z)/∂Er
<E>=-∂ln(Z)/∂β
The Attempt at a Solution
I...
Hello,
Are the electrons at the fermi level regarded as the "free electrons" of the metal?
Also, how does one go about calculating the Fermi level? Is there an equation or is it experimentally determined?
*Bonus question*
Electrons that undergo phonon exchange and pair up are called...
On the attached file the tight binding dispersion for a 2d square lattice is described. It is then assumed that the fermi surface is a square. My question is: How can it ever be a perfect square when the dispersion looks as it does.
Also can someone explain:
Why does the half filled case...
Homework Statement
Hey guys,
So here's what we have:
Bose-Einstein function
g_{v}(z)=\frac{1}{\Gamma(z)}\int_{0}^{\infty}\frac{x^{v-1}dx}{z^{-1}e^{x}-1}
Fermi function
f_{v}(z)=\frac{1}{\Gamma(z)}\int_{0}^{\infty}\frac{x^{v-1}dx}{z^{-1}e^{x}+1}
And we have the series version of...
I'm supposed to be working with an STM in the coming weeks to determining the Fermi Level of some semiconductor diamond films.
I was bombarded with a lot of information by my lab supervisor and the bit of my notes about the calculation just says "Differential of voltage vs current allows us...
From thermodynamics we have dU=Tds-Pdv+\mu dN. So the chemical potential is the energy change due to adding an extra particle when S and V are constant. Now consider an intrinsic semiconductor at T=0 in which the valence band is all-occupied and conduction band is empty. If we add an extra...