Homework Statement
Find trigonometric Fourier series for ##f(x)=|x|##, ##x∈[−\pi, \pi]##, state points where ##F(x)## fail to converge to ##f(x)##.
Homework Equations
##F(x) = \frac{a_0}{2}+\sum\limits_{n=1}^\infty a_ncos(\frac{n\pi x}{L})+b_nsin(\frac{n\pi x}{L})##...
Homework Statement
Consider the Fourier series of a signal given by
$$x(t)=\sum_{k=-\infty}^{\infty} a_ke^{jk\omega_0t}$$
Let's consider an approaches to this series given by the truncated series.
$$x_N(t)=\sum_{k=-N}^{N} a_ke^{jk\omega_0t}$$
a- Show that if $x(t)$ is real then the series...
I'm trying to use Maxima to examine the error in a Fourier series as the number of terms increases. I've figured out how to produce a Fourier series and plot partial sums, but this has me stumped.
If anyone experienced with the Maxima CAS has some insight into this, I would greatly appreciate...
Homework Statement
Find Fourier coefficients of the periodic function whose template is x(t) where the Fourier Transform of x(t) is X(f) = (1-f^2)^2 where \left|f\right|<1 and period T_0= 4.
Homework Equations
FC=\hat x_T(k,T_0)=\sum_{k=-\infty}^\infty\frac{1}{T_0}X\left(k/T_0\right)
The...
Hi,
First of all, I want to say that I know how can define and calculate Fourier coefficients but I have some question about the final presentation of Fourier and half-period or unknown period functions.
1)In this function how can we define T?
2)for above diagram, in a book, they define f(t)...
Homework Statement
f(x)=x on [0,2)
Homework Equations
Fourier Series is given as:
f(x)=a0/2 + n=1∞∑(an*cos(nπx/L) + bn*sin(nπx/L)
a0=1/L*-LL∫f(x)dxThe Attempt at a Solution
Basically what I am being taught is that we take the Period, T, to be equal to 2L so, T=2L
In this case T=2 and L=1. My...
Homework Statement
In Complex Fourier series, how to determine the function is odd or even or neither, as in the given equation
$$ I(t)= \pi + \sum_{n=-\infty}^\infty \frac j n e^{jnt} $$Homework Equations
##Co=\pi##
##\frac {ao} 2 = \pi##
##Cn=\frac j n##
##C_{-n}= \frac {-j} n ##
##an=0##...
Homework Statement
Homework Equations
The Attempt at a Solution
a0=4
an=8/Pi*n
Heres a written solution
https://gyazo.com/57e11d1e7a360914db8aec167beb6b39.png
Homework Statement
Q:/ Find the complex form of Fourier series for the following periodic function whose definition in one period is given below then convert to real trigonometry also find f(0).
f(t)=cos(t/2), notes: (T=2*pi) (L=pi)
Homework Equations
1) f(t)=sum from -inf to +inf (Cn...
Homework Statement
I am self studying an introductory quantum physics text by Marvin Chester Primer of Quantum Mechanics. I am stumped at a problem (1.10) on page 11. We are given
f(x) = \sqrt{ \frac{8}{3L} } cos^2 \left ( \frac {\pi}{L} x \right )
and asked to find its Fourier...
Hello! (Wave)
I want to find the Fourier series of $f(x)=x, 0 \leq x<1$. It is a series with period $1$.
In our case, the function is odd. So in order to find the Fourier series, we would find the odd extension of $f$ and then use the following formulas:
$a_n=0 , \ \ \forall n \geq 0$...
Hello! (Wave)
The following problem shall show the way with which the Fourier series can be used for the solution of initial value problems.Find the solution of the initial value problem
$$y''+ \omega^2 y=\sin{nt}, y(0)=0, y'(0)=0$$
where $n$ is a natural number and $\omega^2 \neq n^2$. What...
Homework Statement
WE have a thermally insulated metallic bar (from enviroment/surroundings) . It has a temperature of 0 ºC. At t=0 two thermal sources are applied at either end, the first being -10 ºC and the second being 10 ºC. Find the equation for the temperature along the bar T(x,t), in...
Homework Statement
I want to find the Fourier series of the sawtooth function in terms of real sine and cosine functions by using the formula:
$$f_p (t)=\sum^\infty_{k=-\infty} c_k \exp \left(j2\pi \frac{k}{T}t \right) \tag{1}$$
This gives the Fourier series of a periodic function, with the...
Hello, can we make a Fourier series expansion of a (increasing or decreasing) step function ? like the one that I attached here. I just want to know the idea of that if it is possible.
Homework Statement
Let ## f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) ##
What can be said about the coefficients ##a_n## and ##b_n## in the following cases?
a) f(x) = f(-x)
b) f(x) = - f(-x)
c) f(x) = f(π/2+x)
d) f(x) = f(π/2-x)
e) f(x) = f(2x)
f) f(x) = f(-x) =...
Homework Statement
A rectangular box measuring a x b x c has all its walls at temperature T1 except for the one at z=c which is held at temperature T2. When the box comes to equilibrium, the temperature function T(x,y,z) satisfies ∂T/∂t =D∇2T with the time derivative on the left equal to zero...
Homework Statement
Derive the expression for coefficients of Fourier series in exponential form for the sequence of rectangular pulses (with amplitude A, period T and duration θ) shown in this image:
Derive the expression for signal power depending on the coefficients of Fourier series...
Homework Statement
A violin string is plucked to the shape of a triangle with initial displacement:
y(x,0) = { 0.04x if 0 < x < L/4
(0.04/3)(L-x) if L/4 < x < L
Find the displacement of the string at later times. Plot your result up to the n = 10...
Homework Statement
Homework Equations
All Fourier series trigonometric equations. I think we are required to use sigma function, integrals, etc.[/B]The Attempt at a Solution
We are currently working through our Fourier series revision studying integrals of periodic functions within K.A...
Q: Suppose ##u(x,t)## satisfies the heat equation for ##0<x<a## with the usual initial condition ##u(x,0)=f(x)##, and the temperature given to be a non-zero constant C on the surfaces ##x=0## and ##x=a##.
We have BCs ##u(0,t) = u(a,t) = C.## Our standard method for finding u doesn't work here...
I was given a function that is periodic about 2π and I need to plot it. I was wondering if there is a way to input a value and have mathematica generate a new graph with the number of iterations. The function is:
$$\sum_{n=1}^{N}\frac{sin(nx)}{n}$$ where n is an odd integer. I guess a better...
Homework Statement
Fourier series expansion of a signal f(t) is given as
f(t) = summation (n = -inf to n = +inf) [3/(4+(3n pi)2) ) * e j pi n t
A term in expansion is A0cos(6 pi )
find the value of A0
Repeat above question for A0 sin (6 pi t)
Homework Equations
Fourier expansion is summation...
Homework Statement
Find the Fourier series of the function
f(x) =√(x2) -pi/2<x<pi/2 , with period pi
Homework EquationsThe Attempt at a Solution
I have tried attempting the question, but couldn't get the answer. uploaded my...
Self Study
1. Homework Statement
Consider a periodic function f (x), with periodicity 2π,
Homework Equations
##A_{0} = \frac{2}{L}\int_{X_{o}}^{X_{o}+L}f(x)dx##
##A_{n} = \frac{2}{L}\int_{X_{o}}^{X_{o}+L}f(x)cos\frac{2\pi rx}{L}dx##
##B_{n} =...
Homework Statement
Find the values of the constant a for which the problem y''(t)+ay(t)=y(t+π), t∈ℝ, has a solution with period 2π
which is not identically zero. Also determine all such solutions
Homework Equations
With help of Fourier series I know that :
Cn(y''(t))= -n2*Cn(y(t))
Cn(y(t+π)) =...
< Mentor Note -- thread moved to HH from the technical forums, so no HH Template is shown >
Hi all. I'm completely new to these forums so sorry if I'm doing anything wrong.
Anyway, I have this question...
Find the Fourier series for the periodic function
f(x) = x^2 (-pi < x < pi)...
Hi, I'm starting to studying Fourier series and I have troubles with one exercises of complex Fourier series with
f(t) = t:
$$t=\sum_{n=-\infty }^{\infty } \frac{e^{itn}}{2\pi }\int_{-\pi}^{\pi}t\: e^{-itn} dt$$
$$t=\sum_{n=-\infty }^{\infty } \frac{cos(tn)+i\, sin(tn)}{2\pi...
Hi PH.
Let ##u_i(\mathbf{x},t)## be the velocity field in a periodic box of linear size ##2\pi##. The spectral representation of ##u_i(\mathbf{x},t)## is then
$$u_i(\mathbf{x},t) = \sum_{\mathbf{k}\in\mathbb{Z}^3}\hat{u}_i(\mathbf{k},t)e^{\iota k_jx_j}$$ where ι denotes the usual imaginary...
has Fourier used sin(x) and cos(x) in his series because "there must be such interval [a,b] where integral of "some function"*sin(x) on that interval will be zero?" so based on that he concluded that any function can be represented by infinite sum of sin(x) and cos(x) cause they are "orthogonal"...
I have the following laplace function
F(s) = (A/(s + C)) * (1/s - exp(-sα)/s)/(1 - exp(-sT))
I think that the inverse laplace will be-
f(t) = ((A/C)*u(t) - (A/C)*exp(-Ct)*u(t)) - ((A/C)*u(t-α) - (A/C)*exp(-C(t-α))*u(t-α))
and
f(t+T)=f(t)
Now I want to find the Fourier series expansion of f(t)...
Homework Statement
Link: http://i.imgur.com/klFmtTH.png
Homework Equations
a_0=\frac{1}{T_0}\int ^{T_0}_{0}x(t)dt
a_n=\frac{2}{T_0}\int ^{\frac{T_0}{2}}_{\frac{-T_0}{2}}x(t)cos(n\omega t)dt
\omega =2\pi f=\frac{2\pi}{T_0}
The Attempt at a Solution
Firstly, x(t) is an even function because...
Hello, PF!
I am currently learning Fourier series (and then we'll move on to the Fourier transform) in one of my courses, and I'm having a hard time finding motivation for its uses. Or, in other words, I can't seem to find its usefulness yet. I know one of its uses is to solve the heat...
Homework Statement
let ##g## be a ##C^1## function such that the two series ##\sum_{-\infty}^{\infty} g(x+2n\pi)## and ##\sum_{n=-\infty}^{\infty} g'(x+2n\pi)## are uniformly convergent in the interval ##0\leq x \leq 2\pi ##. Show the Poisson summation formula:
##\sum_{n=-\infty}^{\infty}...
I'm wondering if anyone could give me the intuition behind Fourier series. In class we have approximated functions over the interval ##[-\pi,\pi]## using either ##1, sin(nx), cos(nx)## or ##e^{inx}##.
An example of an even function approximated could be:
##
f(x) = \frac {(1,f(x))}{||1||^{2}}*1...
Homework Statement
I was given a problem with a list of sums of sinusoidal signals, such as
Example that I made up: x(t)=cos(t)+5sin(5*t). The problem asks if a given expression could be a Fourier expansion.
Homework Equations
[/B]The Attempt at a Solution
My guess is that it has something to...
Homework Statement
I'm calculating the coefficients for the Fourier series and I got to part where I can't simplify an any further but I know I have to.
a_n = \frac{1}{2π}\Big[\frac{cos(n-1)π}{n-1}-\frac{cos(n+1)π}{n+1}-\frac{1}{n-1}+\frac{1}{n+1}\Big]Homework EquationsThe Attempt at a...
Homework Statement
By applying the Gram–Schmidt procedure to the list of monomials 1, x, x2, ..., show that the first three elements of an orthonormal basis for the space L2 (−∞, ∞) with weight function ##w(x) = \frac{1}{\sqrt{\pi}} e^{-x^2} ##
are ##e_0(x)=1## , ##e_1(x)= 2x## ,##e_2(x)=...
Does anyone know if it is possible to solve an equation of the type
u_x=(sin(x))*(u)
on a periodic domain using the fft.
I have tried methods using convolutions but have had no success
thanks in advance
Good afternoon people. Recently I started taking a course at my college about Fourier series but I got extremely confused. Here's what's going on. In school we were asigned to use the symmetry formulas to find the Fourier series of the following:
f\left ( t \right )=\begin{cases}
1 & \text{ if...
Today I had a maths exam with a question which was worded something like:
Write ##sin(3x-x_0)## as its Fourier representation. By doing a suitable integral or otherwise, find the possible values of its Fourier coefficients. You may find the following useful:
##sin(\alpha-\beta) =...
Homework Statement
How are the coefficients of the Fourier series modified for a function with a period 2πT?
Homework Equations
a0 = 1/π ∫π-π f(x) dx
an = 1/π ∫π-π f(x) cos(nx) dx
bn = 1/π ∫π-π f(x) sin(nx) dx
The Attempt at a Solution
I tried letting x= t/T
so dx = dt/T and the limits x = ±...
Homework Statement
The following function is periodic between -π and π:
f(x) = |x|
Find the Coefficients of the Fourier series and, by examining the Fourier series at x=π or otherwise, determine:
1 + 1/32 + 1/52 + 1/72 ... = Σ∞j=1 1/(2j - 1)2
Homework Equations
f(x) = a0/2 + ∑∞n=1 ancos(nx) +...
Given the Laplace's equation with several boundary conditions. finally i got the general solution u(x,t).
One of the condition is that:
u(1,y)=y(1-y)
After working on this I finally got:
∑An sin(π n y )sinh (π n) = y(1-y)
However, i was asked to find An, by not using Fourier series...
Homework Statement
I'm trying to calculate the Fourier Series for a periodic signal defined as:
y = x 0<x<2Π
y = 0 2Π≤x<3Π
Homework Equations
Fn = 1/T ∫T f(t)cos(kwοt + θk)[/B]
cn/2 + ∑k=1k=∞(cn)cos(kwοt+θk)
cn= 2|Fn|
θk=∠Fn
The Attempt at a Solution
I got Cn =...