I would like to compare and backtest these signals by applying Fourier transform to the signals received from moving averages. I would be very pleased if you could share your opinions and suggestions on this issue.
There is a Fourier transform that I don't really understand in my textbook.
I have the following equation:
##\ddot{\delta} + 2H\dot{\delta} -\frac{3}{2} \Omega_m H^2 \delta = 0##
Then using the Fourier transform:
##\delta_{\vec{k}} = \frac{1}{V} \int \delta(\vec{r}) e^{i \vec{k} \cdot \vec{r}}...
Suppose I have a pure sine wave. Upon Fourier transforming (FT) the time signal, I obtain a delta function in the frequency domain. If I subsequently modulate this sine wave with another function, for instance, a Gaussian, the delta function in the frequency domain will broaden. I'm curious...
Hello,
I understand how the FT and the STFT work. The STFT provides time-frequency localization, i.e. it can tell us when the spectral components are acting in the time-domain signal...The STFT is also useful for non-stationary signals which are signals whose statistical characteristics are...
I'm studying Quantum Field Theory for the Gifted Amateur and feel like my math background for it is a bit shaky. This was my attempt at a derivation of the above. I know it's not rigorous, but is it at least conceptually right? I'll only show it for bosons since it's pretty much the same for...
TL;DR Summary: Solve heat equation in a disc using fourier transforms
Carbon dioxide dissolves in the blood plasma but is not absorbed by red blood cells. As the blood returns to an alveolus, assume that it is well-mixed so that the concentration of dissolved CO2 is uniform across a...
So my first thought was that I can just use Fourier trick and integrate:
$$ F(q^2) = \int_V \rho(r) \cdot e^{ i \frac{ \vec{q} \cdot \vec{r} }{h} } d^3r $$
$$ F(q^2) = 2\pi \rho_0 \int_0^{\infty} r^2 \cdot e^\frac{-r}{R} dr \cdot \int_0^{\pi} \sin{\theta} \cdot e^{ -i \frac{q \cdot r...
My issue here is the fact that the slits are supposed to infinite in the ##y##-direction. With what's given in the assignment, I'd define the apparatus function ##a(x,y)## as
$$
a(x,y) = \begin{cases} 1 & , \, ( 9d \leq |x| \leq 10d ) \wedge (y \in \mathbb{R}) \\ 0 & , \, \text{else}...
Hey all,
I just wanted to double check my logic behind getting the Fourier Transform of the following Hamiltonian:
$$H(x) = \frac{ie\hbar}{mc}A(x)\cdot\nabla_{x}$$
where $$A(x) = \sqrt{\frac{2\pi\hbar c^2}{\omega L^3}}\left(a_{p}\epsilon_{p} e^{i(p\cdot x)} + a_{p}^{\dagger}\epsilon_{p}...
In my system I am trying to represent two lenses. L1 with focal length f1=910mm and the other lens, L2 with focal length f2=40mm. These lenses are space such that there is a distance of f1+f2 between the lenses. I have a unit amplitude plane wave incident on L1. My goal is to find the...
I was wondering if the following is true and if not, why?
$$
\begin{split}
\hat{f}_1(\vec{k}) \hat{f}_2(\vec{k}) &= \hat{f}_1(\vec{k}) \int_{\mathbb{R}^n} f_2(\vec{x}) e^{-2 \pi i \vec{k} \cdot \vec{x}} d\vec{x}
\\
&= \int_{\mathbb{R}^n} \hat{f}_1(\vec{k}) f_2(\vec{x})...
First,
##\tilde{f}(\omega)=\int_{-\infty}^{\infty}e^{a|t|}\cos(bt)e^{-i\omega t} \mathrm{d}t##
We can get rid of the absolute value by splitting the integral up
##\int_{-\infty}^{0}e^{at}\cos(bt)e^{-i\omega t} \mathrm{d}t+ \int_{0}^{\infty}e^{-at}\cos(bt)e^{-i\omega t} \mathrm{d}t##
Using...
I am unsure if ##h(x,t)## really is a wave packet, but it looks like one, hence the title. Anyway, so I'd like to determine ##\hat{h}(k,t=0)##. My attempt so far is recognizing that, without the real part in the integral, i.e.
##g(x,t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} a(k)e^{i(kx-\omega...
The 2D Fourier transform is given by: \hat{f}(k,l)=\int_{\mathbb{R}^{2}}f(x,y)e^{-ikx-ily}dxdy
In terms of polar co-ordinates: \hat{f}(\rho,\phi)=\int_{0}^{\infty}\int_{-\pi}^{\pi}rf(r,\theta)e^{-ir\rho\cos(\theta-\phi)}drd\theta
For Fourier transforms in cartesian co-ordinates, relating the...
I am unsure about what is being asked for in the question. At first I thought the question asks one to calculate the inverse Fourier transform and then to analyze its depends on ##t##, however, the "estimate" makes me think otherwise.
So,
##\hat{p}(\omega)=\int_{-\infty}^{\infty} p(t)e^{-i\omega t}\mathrm{d}t=A\int_{0}^{\infty}e^{-t(\gamma+i(\omega+\omega_0))}=A\left[-\frac{e^{-t(\gamma+i(\omega+\omega_0))}}{\gamma+i(\omega+\omega_0)}\right]_0^\infty,##
provided ##\gamma+ i(\omega+\omega_0)\neq 0## for the last equality. Now...
Greentings,
I've dealt with Quantum Theory a lot, but there's one thing I don't quite understand.
When deriving the Fermion-Propagator, say ##S_F##, all the authors I've read from made use of the Fourier-Transform. Basically, it always goes like
$$
\begin{align}
H_D S_F(x-y) &= (i \hbar...
I was studying a Michelson interferometer for infrared absorption in Fourier transform and I've found these two images (taken from https://pages.mtu.edu/~scarn/teaching/GE4250/ftir_lecture_slides.pdf ) representing an infrared monochromatic beam of light going into the interferometer and the...
Hello! I am reading about Fourier Transform MW spectroscopy in a FB cavity, which seems to be quite an old technique and I want to make sure I got it right.
As far as I understand, this is very similar to normal NRM, i.e. one applies a MW ##\pi/2## pulse which puts the molecules in a linear...
What is the Fourier transform of a beat? For example, I want to calculate the Fourier transform of the function ##f(t)=\cos((\omega_p+\omega_v) t)+\cos((\omega_p-\omega_v)t),## where ##$\omega_p+\omega_v=\Omega,\space\omega_p-\omega_v=\omega## and ##\Omega\simeq\omega.##
I think it is equal to...
Hello,
First of all, I checked several other threads mentioning duality, but could not find a satisfying answer, and I don't want to revive years old posts on the subject; if this is bad practice, please notify me (my apologies if that is the case).
For the past few days, I have had a lot of...
Doing the Fourier transform for the function above I'm getting a result, but since I can't get the function f(t) with the inverse Fourier transform, I'm wondering where I made a mistake.
##F(w) = \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} te^{-t(a + iw)} dt##
By integrating by part, where G = -a...
My Professor has started on the Fourier Transforms Topic in the Introductory Mathematical Physics class and gave us a small homework to try our concepts on.
I have attached a clear & legible snippet of my solution. I request someone to please have a look at it & determine if my solution is...
Hello everybody!
I have a question concerning the Fourier transformation: So far I have experimentially measured the magnetic field of a quadrupole but as the hall effect sensor had a fixed orientation I did two series, one for the x, one for y component of the magnetic field, I have 50 values...
I have tried to Fourier transform in ##x## and get the result in the transformed coordinates, please check my result:
$$
\tilde{u}(k, y) = \frac{1-e^{-ik}}{ik}e^{-ky}
$$
However, I'm having some problems with the inverse transform:
$$
\frac{1}{2\pi}\int_{-\infty}^\infty...
Homework Statement:: .
Relevant Equations:: .
I am having a hard time thinking about Fourier transform, because there are so many conventions that i think i got more confused each time i think about it.
See an example, "Find the Fourier transform of $$V(t) = Ve^{iwt} \text{ if } nT \leq t...
Hello again. Having some issues on Fourier transform. Can someone please tell me how to proceed? Need to solve this then use some software to check my answer but how to solve for a and b. Plzz help
I am trying to understand the Helmholtz equation, where the Helmholtz equation can be considered as the time-independent form of the wave equation. It seems to me that the Helmholtz equation can be derived from the Fourier transform, such that it is part of a larger set of equations of varying...
I am trying to understand the relationship between Fourier conjugates in the spherical basis. Thus for two functions ##f(\vec{x}_3)## and ##\hat{f}(\vec{k}_3)##, where
\begin{equation}
\begin{split}
\hat{f}(\vec{k}_3) &= \int_{\mathbb{R}^3} e^{-2 \pi i \vec{k}_3 \cdot \vec{x}_3} f(\vec{x}_3...
I want to know the frequency domain spectrum of an exponential which is modulated with a sine function that is changing with time.
The time-domain form is,
s(t) = e^{j \frac{4\pi}{\lambda} \mu \frac{\sin(\Omega t)}{\Omega}}
Here, \mu , \Omega and \lambda are constants.
A quick...
The reference definition and problem statement are shown below with my work shown following right after. I would like to know if I am approaching this correctly, and if not, could guidance be provided? Not very sure. I'm not proficient at formatting equations, so I'm providing snippets, my...
I just want to make sure I am on the right track here (hence have not given the other information in the question). In taking the Fourier transform of the PDE above, I get:
F{uxx} = iω^2*F{u},
F{uxt} = d/dt F{ux} = iω d/dt F{u}
F{utt} = d^2/dt^2 F{u}
Together the transformed PDE gives a second...
I cite an original report of a colleague :
1) I can't manage to proove that the statistical error is formulated like :
##\dfrac{\sigma (P (k))}{P(k)} = \sqrt{\dfrac {2}{N_{k} -1}}_{\text{with}} N_{k} \approx 4\pi \left(\dfrac{k}{dk}\right)^{2}##
and why it is considered like a relative error ...
Would someone be able to explain like I am five years old, what is the precise relationship between Fourier series and Fourier transform?
Could someone maybe offer a concrete example that clearly illustrates the relationship between the two?
I found an old thread that discusses this, but I...
The definition of Fourier transform (F.T.) that I am using is given as:
$$f(\vec{x},t)=\frac{1}{\sqrt{2\pi}}\int e^{-i\omega t}\tilde{f}(\vec{x},\omega)\,\mathrm{d}\omega$$
I want to show that:
$$\frac{1}{c\sqrt{2\pi}}\int e^{-i\omega t}\omega^2...
Given ##f(\vec{x})##, where the Fourier transform ##\mathcal{F}(f(\vec{x}))= \hat{f}(\vec{k})##.
Given ##\vec{x}=[x_1,x_2,x_3]## and ##\vec{k}=[k_1,k_2,k_3]##, is the following true?
\begin{equation}
\begin{split}
\mathcal{F}(f(x_1))&= \hat{f}(k_1)
\\
\mathcal{F}(f(x_2))&= \hat{f}(k_2)
\\...
Hi
I would like to transform the S-parameter responce, collected from a Vector Network Analyzer (VNA), in time domain by using the Inverse Fast Fourier Transform (IFFT) . I use MATLAB IFFT function to do this and the response looks correct, the problem is that I do not manage to the time scaling...
I have not studied the Fourier transform (FT) in great detail, but came across a problem in electrodynamics in which I assume it is needed. The problem goes as follows:
Evaluate ##\chi (t)## for the model function...
In August, "Quantum Information Processing" published an article describing a full FFT in the quantum domain - a so-called QFFT, not to be confused with the simpler QFT.
According to the publication:
I am attempting to be able to do this problem with the help of Mathematica and Fourier transform. My professor gave us instructions for Fourier Transformation and Inverse Fourier, but I don't believe that my output in Mathematica is correct.
I was content with the understanding of the Fourier transform (FT) as a change of basis, from the time to the frequency basis or vice versa, an approach that I have often seen reflected in texts.
It makes sense, since it is the usual trick so often done in Physics: you have a problem that is...
Hi,
I was hoping to gain more insight into these window questions when looking at frequency spectra questions. I don't really know what makes windows better than one another.
My attempt:
In the question, we have f(t) = cos(\omega_0 t) and therefore its F.T is F(\omega ) = \pi \left(...
I have a question related to linearity of power spectral density calculation.
Suppose I have a time series, divided into some epochs. If I compute PSD by Welch's method with a time window equal to the length of an epoch and without any overlap, I obtain this result:
If I calculate the...
From the sketch, I know that this function is an even function. So, I simplify the Fourier transform in the limit of the integration (but still in exponential form). Then, I try to find the exponential FOurier transform. Here what I get:
$$g(a)=\frac{2}{2\pi} \int_{0}^{\infty} e^{-x} e^{-iax}...
https://en.wikipedia.org/wiki/Riemann_hypothesis#Quasicrystals a quasicrystal as "a distribution with discrete support whose Fourier transform also has discrete support."
https://en.wikipedia.org/wiki/Quasicrystal#Mathematicsdefines a quasicrystal as "a structure that is ordered but not...
Summary:: If ##f(x)=-f(x+L/2)##, where L is the period of the periodic function ##f(x)##, then the coefficient of the even term of its Fourier series is zero. Hint: we can use the shifting property of the Fourier transform.
So here's my attempt to this problem so far...
Hi,
In class I have learned how to find the Fourier transform of rectangular pulses. However, how do I solve a problem when I should sketch the Fourier transform of a pulse that isn't exactly rectangular.
For instance "Sketch the Fourier transform of the following 2 pulses"
Thanks in advance...