Homework Statement
Solve the following partial differential equation , using Fourier Transform:
Given the following:
And a initial condition:
Homework EquationsThe Attempt at a Solution
First , i associate spectral variables to the x and t variables:
## k ## is the spectral variable...
Homework Statement
I am suppose to write a program that compares the FFT (Fast Fourier Transform Diagrams) of a sampled signal without the use of a window function and with it. The window function should be as long as the signal and the signal should have N points, N chosen as to not cause...
Homework Statement
find the Fourier transform of the following function in two ways , once using direct computation , and second using the convolution therom .
Homework Equations
Acos(w0t)/(d2+t2)
The Attempt at a Solution
I tried first to solve directly . used Euler's identity and got...
I apologize ahead of time for the simplicity of the question, but this has really been bothering me.Given the de Broglie relation, assuming natural units, where ##\hbar = 1##:
\begin{equation}
\begin{split}
\vec{k} &= M \vec{v}
\end{split}
\end{equation}My question regards velocity and...
Hi All! I've been looking at this Fourier Transform integral and I've realized that I'm not sure how to integrate the exponential term to infinity. I would expect the result to be infinity but that wouldn't give me a very useful function. So I've taken it to be zero but I have no idea if you can...
Homework Statement
The Fourier transfrom of the wave function is given by
$$\Phi(p) = \frac{N}{(1+\frac{a_0^2p^2}{\hbar^2})^2}$$
where ##p:=|\vec{p}|## in 3 dimensions.
Find N, choosing N to be a positive real number.
Homework Equations
$$\int d^3\vec{p}|\Phi(p)|^2=1$$
, over all p in the 3...
Please, can anyone explain how formula (5) is obtained in J.J. Barton article ''Approximate translation of screened spherical waves" . Phys.Rew. A ,Vol.32,N2, 1985. ?
https://doi.org/10.1103/PhysRevA.32.1019
The same formula are given in the book Pendry J.B. "Low enrgy electron diffraction. The...
When you do a discrete Fourier transform (DFT) of a one-dimensional signal, I understand that the second half of the result is the complex conjugate of the first half. If you threw out the second half of the result, you're not actually losing any data and you would be able to recreate the entire...
Hi, outside the mathematical proof that shows that sines of different frequency are orthogonal... is there geometric interpretation/picture of this phenomena?
Homework Statement
Given a continuous non-periodic function, its Fourier transform is defined as:
$$f(x) = \int_{-\infty}^\infty c(k) e^{ikx} dk, \ \ \ \ \ \ \ \ \ \ \ \ \ c(k) = \frac{1}{2\pi} \int_{-\infty}^\infty f(x) e^{-ikx} dx$$
The problem is proving this is true by evaluating the...
A common use of the Fourier transform in physics is to transform between momentum-space and position-space. But what physical variables am I allowed to transform between? For instance can I use the Fourier transform to go from momentum space to frequency space or whatever?
These are from Griffith's:
My lecture note says that
I am having quite a confusion over here...Does the ##\Psi## in the expression ##\langle f_p|\Psi \rangle## equals to ##\Psi(x,t)##? I understand it as ##\Psi(x,t)## being the component of the position basis to form ##\Psi##, so...
Can all differential equations be turned into algebraic equations by Fourier transform (FT)? If not, what kind of differential equations can be solved by the FT technique?
The orientation of frequency components in the 2-D Fourier spectrum of an image reflect the orientation of the features they represent in the original image.
In techniques such as nonlinear microscopy, they use this idea to determine the preferred (i.e. average) orientation of certain features...
Homework Statement
Consider some unknown function f:R --> C. Denote its Fourier transform by F. Suppose we know |f(x)|2 for all x and |F(k)|2 for all k. Can we recover f(x) (for all x) from this information?
Homework Equations
None.
The Attempt at a Solution
None. It's a yes or no question...
Homework Statement
I am supposed to compute the Fourier transform of f(x) = integral (e-a|x|)
Homework Equations
Fourier transformation:
F(p) = 1/(2π) n/2 integral(f(x) e-ipx dx) from -infinity to +infinity
The Attempt at a Solution
My problem is, that I do not know how to handle that there...
Homework Statement
Given the Fourier transformation pair ##f(t) \implies F(jw)## where
##f(t) = e^{-|t|}## and ##F(jw)=\frac{2}{w^2+1}## find and make a graph of the Fourier transform of the following functions:
a) ##g(t)=\frac{2}{t^2+1}##
b) ##h(t) = \frac{2}{t^2+1}\cos (w_ot)##
Homework...
https://en.wikipedia.org/wiki/Discrete_Fourier_transform
Why is the signal obtained from a DFT periodic?
The time signal x[n] is finite and the number of sinusoids being correlated with it is finite, yet its said the frequency spectrum obtained after the DFT is periodic. I've also read the...
I would like to express that when I am viewing the repetitive Fourier transform on Internet I encounter that for instance twice Fourier transform may lead the same value at the end of first Fourier transform. When does repetitive( twice or third... consecutively)fourier transform be same with...
Given two probability amplitude wavefunctions, one in position space ##\psi(r,k)## and one in wavenumber space ##\phi(r,k)##, where ##r## and ##k## are Fourier conjugates, how is it possible for the modulus squared, i.e., probability density, of BOTH wavefunctions to be normalized? It seems...
Homework Statement
y(w)= 3/(iw-1)^2(-4+iw)
Homework Equations
N/A
The Attempt at a Solution
3/(iw-1)^2(-4+iw)
= A/iw-1 + B/(iw-1)^2 + C/-4+iw
for B iw = 1
B=3/-4+1 = -1
for C iw = 4
C= 3/(4-1)^2 = 1/3
I know the answer for A should be -1/3 however I am unsure how to obtain this as if the...
Homework Statement
I am reading the book of Gerry and Knight "Introductory Quantum Optics" (2004). In page 60, Chapter 3.7, there is two equation referring Fourier Transformation in the complex plane as follows:
$$g(u)=\int f(\alpha)e^{\alpha^{*}u-\alpha u^{*}}d^{2}\alpha, (3.94a)$$...
Hi i’m having problems with the following equations:
X(w)=2/(-1+iw)(-2+iw)(-3+iw)
This then becomes the following equation according the the tutorial, although there is no explanation as to how:
X(w)=1/-1+iw, -2/-2+iw, +1/-3+iw
The commas indicated the end of each fraction to make it easier...
Hi,
I'm struggling with a conceptual problem involving the Fourier transform of distributions. This could possibly have gone in Physics but I suspect what I'm not understanding is mathematical.
The inverse Fourier transform of a Cauchy distribution, or Lorentian function, is an exponentially...
Hi everybody. There has been a thread about this on physics forums, where the Fourier transform X(w) of x(t) volts (with time units in seconds) could be considered as volt second, or volt per Hz. So when we see tables of Fourier transform pairs, we might see Fourier transform plots associated...
Homework Statement
I am to solve an ODE using the Fourier Transform, however I am quite inexperienced in using this method so I'd like some advice:
Homework Equations
a) The Fourier Transform
b) The Inverse Fourier Transform
The Attempt at a Solution
I started by applying the Fourier...
1. The problem statement, all variables, and given/known data
Task begins by giving sample function and a corresponding Fourier transform $$f(t) = e^{-t^2 / 2} \quad \Longleftrightarrow \quad F(\omega) = \sqrt{2 \pi} e^{-\omega^2 / 2}$$ and then asks to find the Fourier transform of $$f_a(t) =...
Homework Statement
I am giving the following signal:
and asked to get the DSB-SC signal of this
Homework Equations
3. The Attempt at a Solution [/B]
So, I know a few things.
My prof writes that
I would have to multiply my original signal out and then take the Fourier transforms...
Homework Statement
I've written a program that calculates the discrete Fourier transform of a set of data in FORTRAN 90. To test it, I need to "generate a perfect sine wave of given period, calculate the DFT and write both data and DFT out to file. Plot the result- does it look like what you...
Hi,
I'm doing my third year project on diffraction gratings and patterns and analysaing them via computer software and Fourier transforms. I'm going to design my diffraction gratings this week and then create them via taking a picture with a disposable camera and using the negative film. What...
Homework Statement
Homework Equations
Scaling property and property of dual. I got the answer.
The Attempt at a Solution
I got the answer using scaling property and using property of dual.
x1(t)---> X2(W)----(another Fourier transform)--->2(3.14) x1(-w)
But I think the final answer should be...
Hi, let's take this ode:
y''(t) = f(t),y(0)=0, y'(0)=0.
using the FT it becomes:
-w^2 Y(w) = F(w)
Y(w)=( -1/w^2 )F(w)
so i can say that -1/w^2 is the Fourier transorm of the green's function(let's call it G(w)).
then
y(t) = g(t) * f(t)
where
g(t) = F^-1 (G(w)) (inverse Fourier transorm)
how can...
I'm doing a research project over the summer, and need some help understanding how to construct an inverse Fourier transform (I have v. little prior experience with them).
1. Homework Statement
I know the explicit form of ##q(x)##, where
$$ q(x) = \frac{M}{2 \pi} \int _{- \infty}^{\infty} dz...
Homework Statement
Homework Equations
if x(t) --> X(W)
then
x(-t) --> X(-W)
and
x(t+a)-->ejwX(W)
The Attempt at a Solution
I'm getting right answer for 1st part. For second part book says right answer is C.
Where am I wrong?[/B]
Homework Statement
Show, by completing the square in the exponent, that the Fourier transform of a Gaussian wavepacket ##a(t)## of width ##\tau## and centre (angular) frequency ##\omega_0##:
##a(t)=a_0e^{-i\omega_0t}e^{-(t/\tau)^2}##
is a Gaussian of width ##2/\tau##, centred on ##\omega_0##...
I am studying online course notes from University of Waterloo on 'Analytical mathematics in geology' in which the author describes a 'modified Fourier transform' which can be used to incorporate 3rd kind of boundary conditions. The formula is
## \Gamma \small[ f(x) \small] = \bar{f}(a) =...
Homework Statement
I have this function ##f(\theta)=cos(n \ sin(\frac{\theta}{2})\pi)## and I need to take the discrete Fourier transform (DFT) numerically. I did so and I attached the result for ##\theta \in [0,2\pi)## and n =2,4,8,16,32, together with the function for a given n. I need to...
Homework Statement
I need to calculate the derivative of a function using discrete Fourier transform (DFT). Below is a simplified version of my code (just for sin function) in python
Homework Equations
from __future__ import division
import numpy as np
from pylab import *
pi = np.pi
def...
Homework Statement
An LTI system has an impulse response h(t) = e-|t|
and input of x(t) = ejΩt
Homework Equations
Find y(t) the system output using convolution
Find the dominant frequency and maximum value of y(t)
Ω = 2rad/s
The Attempt at a Solution
I have tried using the Fourier transform...
Given that position and momentum are Fourier conjugates, what is the derivation for the equation ##\hbar \vec{k} = m \vec{v}##, where momentum-space momentum is defined as ##\hbar \vec{k}## and position-space momentum is defined as ##m \vec{v}##?
When you do a Fourier transform of spacetime.. what do you get? (or how does spacetime look in frequency domain? And what applications do this and what results are they looking or solving for?
Hi, this thread is an extension of this one: https://www.physicsforums.com/posts/5829265/
As I've realized that the problem is that I don't know how to properly use FFTW, from http://www.fftw.org.
I am trying to calculate a derivative using FFTW. I have ##u(x)=e^{\sin(x)}##, so...
Hi. I was checking the library for the discrete Fourier transform, fftw. So, I was using a functition ##f(x)=sin(kx)##, which when transformed must give a delta function in k. When I transform, and then transform back, I effectively recover the function, so I think I am doing something right...
Hi there - just a quick question about Fourier transforms:
When learning about quantum mechanics, I found that the Fourier transform and inverse Fourier transform were both defined with constants of ##{ \left( 2\pi \right) }^{ -d/2 }## in front of the integral. This is useful, as...
Hello buddies!
Please, check out these equations...
Tell me, please, are they mathematically correct or not?
I need a simple YES/NO answer.
I have not sufficient knowledge to understand them. I just need to know whether they are correct...
Thank you!
P.S. Am is amplitude; I guess it is a...
Homework Statement
Q/ in this inverse Fourier problem, how did he come with the results of integration of (Sinc) function and how did he come up with those results of integration with the inverse part (as in the attached picture)
here is the problem:
https://i.imgur.com/Ir3TQIN.png
Homework...
Homework Statement
Hello everyone,
am trying to solve this Fourier Trans. problem,
here is the original solution >> https://i.imgur.com/eJJ5FLF.pngQ/ How did he come up with this result and where is my mistake?
Homework Equations
All equation are in the above attached picture
The Attempt at a...