Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Fractional exponents
Recent contents
View information
Top users
Description
In probability theory, fractional Brownian motion (fBm), also called a fractal Brownian motion, is a generalization of Brownian motion. Unlike classical Brownian motion, the increments of fBm need not be independent. fBm is a continuous-time Gaussian process BH(t) on [0, T], that starts at zero, has expectation zero for all t in [0, T], and has the following covariance function:
E
[
B
H
(
t
)
B
H
(
s
)
]
=
1
2
(
|
t
|
2
H
+
|
s
|
2
H
−
|
t
−
s
|
2
H
)
,
{\displaystyle E[B_{H}(t)B_{H}(s)]={\tfrac {1}{2}}(|t|^{2H}+|s|^{2H}-|t-s|^{2H}),}
where H is a real number in (0, 1), called the Hurst index or Hurst parameter associated with the fractional Brownian motion. The Hurst exponent describes the raggedness of the resultant motion, with a higher value leading to a smoother motion. It was introduced by Mandelbrot & van Ness (1968).
The value of H determines what kind of process the fBm is:
if H = 1/2 then the process is in fact a Brownian motion or Wiener process;
if H > 1/2 then the increments of the process are positively correlated;
if H < 1/2 then the increments of the process are negatively correlated.The increment process, X(t) = BH(t+1) − BH(t), is known as fractional Gaussian noise.
There is also a generalization of fractional Brownian motion: n-th order fractional Brownian motion, abbreviated as n-fBm. n-fBm is a Gaussian, self-similar, non-stationary process whose increments of order n are stationary. For n = 1, n-fBm is classical fBm.
Like the Brownian motion that it generalizes, fractional Brownian motion is named after 19th century biologist Robert Brown; fractional Gaussian noise is named after mathematician Carl Friedrich Gauss.
View More On Wikipedia.org
Forums
Back
Top