While going through the catalogues I started to wonder, typically lower ESR caps cost more, but if I need the cap for DC smoothing , to filter out unwanted AC ripple, then I put that cap across my DC rails +-. Now so far so good.
It's ability to filter out the AC ripple will be directly related...
Hi,
I have inputs like displacement of a driving mechanism and then the frequency of concern .
Displacement: 0.2 mm
Concerned Frequency: 100 Hz
I would like to evaluate a part with the input displacement applied to a node and not as base excitation.
It can be sweep over the frequency range...
Hello everyone!
I'm watching a Walter Lewin lecture and it seems to me at least that he is dividing maximum frequency of the sound by sound frequency of the transmitter to derive velocity of the transmitter, does this work? It seems that quantity would be dimensionless and velocity obviously...
If a Hookean spring-mass system is made from one mass and a spring, to produce a system with a particular oscillation frequency, it's not a problem to use the propagation of errors concept to find how this frequency responds to small errors in the mass and spring constant. If a chain of...
The relationships for matter waves are (see e.g. https://en.wikipedia.org/wiki/Matter_wave):
λ = h / p and E = h f, where E = m c2
From this the phase velocity can be derived and we get vph = c2 / v.
v is the group velocity, which is also the velocity of the particle.
If I consider these...
I was wondering if anyone could walk me though a better explanation on how to get the given results for these two questions. The solutions posted by my professor aren't really clear to me so if anyone is able to better explain how to get the solution it would be much appreciated!
When given a small displacement ##x##, the equation for m is:
(i) N sin θ = m.a where N is the normal force acting on the ball and θ is angle of the ball with respect to vertical.
(ii) N cos θ = m.g
So:
$$\tan \theta = \frac a g$$
$$\frac x R = \frac{\omega^{2} x}{g} \rightarrow \omega = \sqrt...
I have been given the attached following question:
FIGURE 2 shows the response of a first-order filter to a step input. Estimate the half-power cut-off frequency of the filter and sketch its frequency and phase response.
I believe that I have correctly calculated the half-power cut-off...
Can you derive the formula for frequency observed from doppler effect with stationary person and moving sound source away from the person like this:
##v_t = v + v_s## where ##v_t## is the total velocity observed by stationary person from moving sound, v is velocity of sound and ##v_s## is...
A question elsewhere got me thinking about the frequencies/wavelengths of gravitational waves.
The most obvious source of gravitational waves we are finding is from merging black holes, so presumably the orbital period will directly determine the frequency of those waves, yes? So the...
I found there is kind of solution in Pointon's book: An Introduction to Statistical Physics for Students. But I don't know how to find intensity by using frequency.
Hello,
I am given an exercise in which I need to answer some questions, for this given system : y(n)=1/3[x(n)+x(n-1)]
1/ find the impulse response h(n), then H(n)
2/ calculate the magnitude ||H(n)|| and tell the nature of the filter
3/ calculate Fc which is cutoff frequency when Fe=8Khz , and...
We have 2 open metal tubes, made of Stainless Steel. They both are the same length of 1 metre, and and Outer Diameter of 76mm. One pipe has a wall thickness of 1.5mm, and the other has a wall thickness of 2.0mm.
It was our reasonable guess that the tube with 2.0mm wall thickness, should...
I read in a book that high frequency electromagnetic waves are more able to penetrate than low ones , so why radio waves can penetrate walls when light cannot?
I was always thinking that frequency decides the type of sound we hear ( ex: high pitched squeaky sound). But then I read somewhere that loudness i.e. intensity can also affect the sound we hear. Still the quality of sound should depend only on frequency since loudness would simply make it more...
Hi, this is a question from my textbook that I can't quite make sense of. I don't really know where even to begin, to be honest. The only thing I can think of is that the bead is at equilibrium, thus the force of gravity is equal to the pressure exerted by the gas. I don't know where the heat...
Using analog discovery 2 kit and the bode plot produced by the network analyzer is off. The scope looks fine and everything is behaving how it should except for the bode plot. The magnitude of the bode plot will start at the correct dB then right before tapering off it shoots up a few dB and...
in classical physics, when a charged particle oscillates, it emits an electromagnetic wave, and the frequency of the wave depends on the frequency with which the particle oscillates.
But in quantum physics, when an excited atom emits a photon, the energy of the photon depends on the magnitude of...
I know the v = λf is the formula to find the resonance frequency of a single continuous wave and the formula for resonance frequency of a spring is: 1/2π∗sqrt(𝑘/𝑚)
but what about the Formula for a random object?
a car, or a rock, water ?
is there one Formula to rule them all? or do you...
I saw the following problem in a test I was reviewing:
I don't understand how they got their answer. I used the formula: ƒ=sqrt(T / u) / 2L where f is the frequency of the string, T is the tension, u is the linear mass density, and L is the length of the string.
I got:
T = mg = 50 * 9.8 = 490N...
The flux enclosed by the loop consisting of the solenoid, wires and conducting rod at an angle θ is Φ = blBsinθ, then using small angle approximations and differentiating the induced emf can be found.
I know that there must be some torque opposing the motion but am unsure how to proceed.
If a person was rotating on a verticle axis from head to toe like the Earth or quasar. If nothing can go faster than light, from the person's perspective looking at the stars traveling across the night sky, if you increase the rotation of the earth, stars further than a certain critical distance...
Variables:
Dependent: Vibrational frequency of violin string (Measured using mobile tuning app)
Independent: Temperature in which string is plucked (Measured using infrared thermometer)
Controlled: Violin String, Tension of violin string, Length of violin string, Method of plucking...
I need to know how to predict particle size of a water driplet produced by a given ultrasonic frequency? For example, an ultrasonic fogger will create ~5 micron water driplets at a frequency of 1.75 MHz. I do know that the higher the frequency the smaller the driplet diameter. How is this...
Hi there, I've been fascinated by using simple coherers to pick up the electromagnetic signal from a spark (in imitation of early radio experiments, for high school education). I am using a push button ignitor (piezoelectric crystal) attached to a simple dipole antenna for the transmitter. When...
(This is my first time posting here, sorry in advance for any difficulties. )
All componenets of same type has same magnitude, so e.g. the two resistors both have $R$ resistance.
Given the difficulty of the previous exercises, I believe I'm over complicating the problem. However, here is what...
Is the highest frequency possible the inverse of Planck time?
Separate or connected question, what's the highest frequency achievable practically today?
Hi,
I understand that if there are two signals whose spectrums consist of different set of frequencies, they can be separated using a filter such as bandpass filter on the receiver end. Is it possible to separate two signals who frequency spectrums are the same but power levels are different?
Hi,
I am not quite sure if I have calculated the homework correctly :-)
I proceeded in such a way that I first calculated from which frequency the two terms are equal, and thus the equation results in zero.
Then I figured a relative accuracy of 10% equals a relative error of 90%. So I...
Setting aside pure sine waves, and looking instead at real-world sound, such as music, I wonder what "frequency" is? Fourier's Theorem seems to be aimed specifically at PERIODIC waveforms, but music (as just one example of real-world sound) is not periodic, as far as I can see. So it is not...
##-w1## and ##-w2## are to shift the cosine graph to the right, and ##\frac{2pi}{\lambda}## is to stretch the graph. But I can't seem to draw an appropriate ##y1+y2## graph (quite irregular) and I struggle to find the resultant frequency and wavelength. Also, why is there angular frequency in a...
The time domain analysis is easier to plot compared to analyzing the frequency with respect to the phase. But, LTSpice makes it look really easy. So, for a small signal AC analysis, LTSpice does use a AC voltage source for its frequency domain analysis function. This must be a really convenient...
I understand the part where there will be more nodes produced because number of wave produced will increase (let say from half wave to one wave). But I don't understand the part where the amplitude will be less. How can number of nodes (or frequency) affect the amplitude of standing wave...
There was a thread recently in another subforums where a user talked about creating "square waves" at Ghz frequencies. It was said there that at that frequency range one cannot have a square wave as the inductance "rounds off" the edges making the waveform sine like.
I am wondering then how...
Given a discretely sampled horizontal sinusoid of length p, and unknown amplitude, what is the minimal number of consecutive points on a window that is required to correctly estimate its total length, starting at any random point on the wave? Initially I would think it would be either p (full...
First of all I want to ask , do the LHC power klystrons work always in CW or are their frequency shifted to correct for timing of the bunches in the LHC tubes in case something isn't aligned or doesn't that ever happen?
Also how do they drive the klystrons at LHC or other CW operation from an...
I consider a scalar massless field obeying the Klein-Gordon equation ##\Box \psi=0 ##.
First, in Minkowski spacetime, a solution of the equation is $$ u_{\mathbf k}(x^\mu)=((2\pi)^3 2 \omega)^{-1/2} e^{ik_\mu x^\mu}$$ where ##\mathbf k=(\omega, \vec k)##. So this mode has a frequency of...
Greetings, I'm new here, I have an interest in the nature of reality, and a question.
Does the quantum spin of a particle (its intrinsic angular momentum) have anything to do with its wavelength and frequency?
One of the experts on Quora said no, and I cannot find anything about it on the web...
In general, it seems that higher frequencies of a wave dissipate more than lower frequencies.
For sound waves, it explains why you can hear lower pitches from farther away. For a vibrating string or plate, the higher frequencies also dissipate first, with the fundamental fading last. For water...
Ever since I learned about FM something's been bugging me, which is that the PLL error correction acts on the encoded data, seeming to leave open the possibility of the shape of the data itself interfering with the PLL's interpretation of what the carrier frequency is. It seems dangerous to mix...
I thought 14 mm, 86 mm, 156 mm, 225 mm and 293 mm are the position where constructive interference happens 14 mm is the position of 1st maxima, 86 mm is the position of 2nd maxima and etc (measured from a certain position of center maxima)
But when I used that numbers to calculate the fringe...