g-2

Muon g − 2 (pronounced "gee minus two") is a particle physics experiment at Fermilab to measure the anomalous magnetic dipole moment of a muon to a precision of 0.14 ppm, which is a sensitive test of the Standard Model. It might also provide evidence of the existence of new particles.
The muon, like its lighter sibling the electron, acts like a tiny magnet. The parameter known as the "g factor" indicates how strong the magnet is and the rate of its gyration in an externally applied magnetic field. It is this rate of gyration that is indirectly measured in the Muon g − 2 experiment.
The value of g is slightly larger than 2, hence the name of the experiment. This difference from 2 (the "anomalous" part) is caused by higher-order contributions from quantum field theory. In measuring g − 2 with high precision and comparing its value to the theoretical prediction, physicists will discover whether the experiment agrees with theory. Any deviation would point to as yet undiscovered subatomic particles that exist in nature.
On July 9, 2023 the Fermilab collaboration concluded the experiment after six years of data collection. The initial results (based on data from the first year of the experiment's operation) were released on April 7, 2021. The results from the first three years of data-taking were announced in August 2023. The final results, based on the full six years of data-taking, are planned to be released in 2025.

View More On Wikipedia.org
Back
Top