Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Gaussian elimination
Recent contents
View information
Top users
Description
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855) although some special cases of the method—albeit presented without proof—were known to Chinese mathematicians as early as circa 179 CE.
To perform row reduction on a matrix, one uses a sequence of elementary row operations to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations:
Swapping two rows,
Multiplying a row by a nonzero number,
Adding a multiple of one row to another row.Using these operations, a matrix can always be transformed into an upper triangular matrix, and in fact one that is in row echelon form. Once all of the leading coefficients (the leftmost nonzero entry in each row) are 1, and every column containing a leading coefficient has zeros elsewhere, the matrix is said to be in reduced row echelon form. This final form is unique; in other words, it is independent of the sequence of row operations used. For example, in the following sequence of row operations (where two elementary operations on different rows are done at the first and third steps), the third and fourth matrices are the ones in row echelon form, and the final matrix is the unique reduced row echelon form.
[
1
3
1
9
1
1
−
1
1
3
11
5
35
]
→
[
1
3
1
9
0
−
2
−
2
−
8
0
2
2
8
]
→
[
1
3
1
9
0
−
2
−
2
−
8
0
0
0
0
]
→
[
1
0
−
2
−
3
0
1
1
4
0
0
0
0
]
{\displaystyle {\begin{bmatrix}1&3&1&9\\1&1&-1&1\\3&11&5&35\end{bmatrix}}\to {\begin{bmatrix}1&3&1&9\\0&-2&-2&-8\\0&2&2&8\end{bmatrix}}\to {\begin{bmatrix}1&3&1&9\\0&-2&-2&-8\\0&0&0&0\end{bmatrix}}\to {\begin{bmatrix}1&0&-2&-3\\0&1&1&4\\0&0&0&0\end{bmatrix}}}
Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes preferable to stop row operations before the matrix is completely reduced.
View More On Wikipedia.org
Forums
Back
Top