Gaussian quadrature Definition and 17 Threads

  1. M

    MHB Calculate Gaussian Quadrature: x1, x2 & w1, w2

    Hey! 😊 If we want to calculate the nodes $x_1, x_2$ and the weight functions $w_1, w_2$ for the Gaussian quadrature of the integral $$\int_{-1}^1f(x)\, dx\approx \sum_{j=1}^2w_jf(x_j)$$ is there a criteria that we have to consider at chosing the weight functions? I mean if we use e.g...
  2. C

    I Question about weights using Chebyshev polynomials as quadrature

    Hello everyone. I am studying this article since I am interested in optimization. The article makes use of Clenshaw–Curtis quadrature scheme to discretize the integral part of the cost function to a finite sum using Chebyshev polynomials. The article differentiates between the case of odd...
  3. Shackleford

    Is My 2D Gaussian Quadrature Algorithm Accurate?

    ## \int_{-1}^{1} \int_{-1}^{1} e^{-(x^2 + y^2)} cos(2π (x^2 + y^2)\,dx\,dy ## ## I = \int_{-1}^{1} \int_{-1}^{1}f(x,y) \,dx\,dy \approx \sum_{i=0}^{n}\sum_{j=0}^{n} w_i w_j f(x_i, y_j) ## ## = w_0 w_0 f(x_0, y_0) + w_0 w_1 f(x_0, y_1) + w_1 w_0 f(x_1, y_0) + w_1 w_1 f(x_1, y_1) ## ## w_0 =...
  4. M

    MHB Gaussian Quadrature Formula for Integrating Polynomials of Degree 6

    Hey! :o I want to calculate the integral $$\int_0^1\frac{1}{x+3}\, dx$$ with the Gaussian quadrature formula that integrates exactly all polynomials of degree $6$. The gaussian quadrature integrates exactly polynomials $\Phi (x)$ with maximum degree $2n-1$. In this case we consider $n=4$...
  5. M

    MHB Gaussian Quadrature: isolated roots

    In an exercise I have determined the Gaussian Quadrature formula and I have applied that also for a specific function. Then there is the following question: Explain why isolated roots are allowed in the weight function. What exacly is meant by that? Could you explain that to me? What are...
  6. O

    I Gaussian Quadrature on a Repeated Integral

    Hi there, I am having some difficulty evaluating a repeated integral, which is the first of two shown in the image. I had hoped to be able to use Gaussian Quadrature to provide a numerical result, however am unsure on if this is possible for a repeated integral? I have attempted to use Cauchy'...
  7. E

    I How do you Calculate the Points in Gaussian Quadrature?

    How do you calculate the necessary points in a function to numerically integrate it using the Gaussian Quadrature? If I were to evaluate a function using two points, the Gaussian Quadrature needs the value of the function at ##\displaystyle{\pm \sqrt{\frac{1}{3}}}## with weights of unity. How...
  8. ognik

    How to choose N for Gaussian Quadrature

    Homework Statement Evaluate the definite integral below numerically (between limits -1 and 1) using a couple of numerical methods, including Gauss-Legendre quadrature - and compare results. Homework Equations $$ \int{(1-x^2)^\frac{1}{2}} dx $$ "Gauss quadrature yields the exact integral if φ...
  9. C

    From Gaussian Quadrature to Chebyshev Quadrature

    Hi, I'm studying about Chebyshev Quadrature and i found so little and confused information about this. I don't know if Gauss-Chebyshev Quadrature is the same of Chebyshev Quadrature. The only good information that i found was from Wolfram...
  10. H

    Four-point Gaussian quadrature rule

    I need to use the four-point Gaussian quadrature rule to do some intense numerical calculations. Could anyone link to this page where it's written out explicitly over an [a,b] interval. I haven't been able to find it, I'm trying to derive it now but it's crucial that I'm 100% correct. I haven't...
  11. E

    How to compute Gaussian Quadrature weights?

    My numerical analysis book doesn't explain it. It just tells you to use precomputed tables, and directs you to an out of print book from the 80's that I can't find anywhere. After searching, I found http://en.wikipedia.org/wiki/Gaussian_quadrature#Computation_of_Gaussian_quadrature_rules" in...
  12. W

    Find integral using Gaussian Quadrature Method (numerical)

    Homework Statement approximate this integral: \oint e^(-(x^2)) from 0 to 4 using Gaussian Quadrature with n = 3 Homework Equations can be found at: http://en.wikipedia.org/wiki/Gaussian_quadrature The Attempt at a Solution n = 3 coefficients: c(1) = c(3) = 5/9, c(2) = 8/9...
  13. Somefantastik

    Numerical Integration: Gaussian Quadrature

    \int^{1}_{-1}f(x)dx = \sum^{n}_{j=-n}a_{j}f(x_{j}) Why does \sum_{j}a_{j} = 2 ? I know that the aj's are weights, and in the case of [-1,1], they are calculated using the roots of the Legendre polynomial, but I don't understand why they all add up to 2.
  14. W

    MATLAB 5-point Gaussian Quadrature using constructed approximant in Matlab

    Homework Statement 6.3.b highlighted in attachment. Have solved part a (which gives the approximant used in part b) and problem 3.8 (which gives the original function). 3.8 was definitely solved correctly. Part a could be wrong, but the solution seems OK. a = acreage y = yield from 3.8 -...
  15. V

    Why Is My Gaussian Quadrature Implementation Inaccurate?

    I'm trying to make a generalized quadrature method and I seem to be running into some bizarre errors. For n=2 my answer is twice what it should be and for n greater the innaccuracy increases (answer/n is close but worse than answer/2 with n=2). My general algorithm is: p = nth legendre...
  16. S

    Gaussian Quadrature Explained: Example Included

    Anyone care to explain the concept of gaussian quatrature? I've tried some websites but they're a little over my head. An example would be appreciated, thanks!
  17. S

    What is the Gaussian Quadrature?

    I am not sure of the spelling, but I heard of the 'gaussian quadature' (or quadrature). It was spoken, and was in a mathematical equation. What the heck is it?
Back
Top