Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Gaussian quadrature
Recent contents
View information
Top users
Description
In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree 2n − 1 or less by a suitable choice of the nodes xi and weights wi for i = 1, ..., n. The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi 1826. The most common domain of integration for such a rule is taken as [−1, 1], so the rule is stated as
∫
−
1
1
f
(
x
)
d
x
≈
∑
i
=
1
n
w
i
f
(
x
i
)
,
{\displaystyle \int _{-1}^{1}f(x)\,dx\approx \sum _{i=1}^{n}w_{i}f(x_{i}),}
which is exact for polynomials of degree 2n − 1 or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if f(x) is well-approximated by a polynomial of degree 2n − 1 or less on [−1, 1].
The Gauss-Legendre quadrature rule is not typically used for integrable functions with endpoint singularities. Instead, if the integrand can be written as
f
(
x
)
=
(
1
−
x
)
α
(
1
+
x
)
β
g
(
x
)
,
α
,
β
>
−
1
,
{\displaystyle f(x)=\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x),\quad \alpha ,\beta >-1,}
where g(x) is well-approximated by a low-degree polynomial, then alternative nodes
x
i
′
{\displaystyle x_{i}'}
and weights
w
i
′
{\displaystyle w_{i}'}
will usually give more accurate quadrature rules. These are known as Gauss-Jacobi quadrature rules, i.e.,
∫
−
1
1
f
(
x
)
d
x
=
∫
−
1
1
(
1
−
x
)
α
(
1
+
x
)
β
g
(
x
)
d
x
≈
∑
i
=
1
n
w
i
′
g
(
x
i
′
)
.
{\displaystyle \int _{-1}^{1}f(x)\,dx=\int _{-1}^{1}\left(1-x\right)^{\alpha }\left(1+x\right)^{\beta }g(x)\,dx\approx \sum _{i=1}^{n}w_{i}'g\left(x_{i}'\right).}
Common weights include
1
1
−
x
2
{\textstyle {\frac {1}{\sqrt {1-x^{2}}}}}
(Chebyshev–Gauss) and
1
−
x
2
{\displaystyle {\sqrt {1-x^{2}}}}
. One may also want to integrate over semi-infinite (Gauss-Laguerre quadrature) and infinite intervals (Gauss–Hermite quadrature).
It can be shown (see Press, et al., or Stoer and Bulirsch) that the quadrature nodes xi are the roots of a polynomial belonging to a class of orthogonal polynomials (the class orthogonal with respect to a weighted inner-product). This is a key observation for computing Gauss quadrature nodes and weights.
View More On Wikipedia.org
Forums
Back
Top