Gcd Definition and 101 Threads

In mathematics, a GCD domain is an integral domain R with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalently, any two elements of R have a least common multiple (LCM).A GCD domain generalizes a unique factorization domain (UFD) to a non-Noetherian setting in the following sense: an integral domain is a UFD if and only if it is a GCD domain satisfying the ascending chain condition on principal ideals (and in particular if it is Noetherian).
GCD domains appear in the following chain of class inclusions:

rngs ⊃ rings ⊃ commutative rings ⊃ integral domains ⊃ integrally closed domains ⊃ GCD domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ fields ⊃ algebraically closed fields

View More On Wikipedia.org
  1. C

    What is the GCD of (a + b, a - b)?

    I am trying to work through the following problem, and don't know where to start: I know that a, b are nonzero integers with gcd(a, b) = 1. I need to compute the gcd (a + b, a - b). Any help?
Back
Top