Hilbert Definition and 304 Threads

  1. W

    How Is the Unit Operator Derived in Quantum Many-Body Hilbert Spaces?

    I am reading J.W.Negele and H.Orland's book "Quantum Many-Particle Systems". I don't know how one can derive equation (1.40) on page 6. The question is For quantum many-body physics, suppose there are N particles. The hilbert space is H_{N}=H\otimesH\otimes...H. Its basis can be...
  2. R

    Need book suggestion: Introduction to Hilbert Spaces

    Our last course on Mathematical Physics covers topology, topological spaces, metric spaces; differential forms; introduction to group theory including finite and continuous groups, group representations, and Lie groups. The textbook to be used is Math methods by Arfken and Intro to Hilbert...
  3. M

    Hilbert space question; show Y is complete iff closed

    I would like a second opinion on my answer to this question as I'm confusing myself thinking about my proof. Any input is appreciated Homework Statement "Let (X, ||.||) be a complete normed linear space and Y \subsetX be a non-empty subspace of X. Then (Y, ||.||) is a normed linear...
  4. M

    Hilbert space question; show Y is complete iff closed

    I would like a second opinion on my answer to this question as I'm confusing myself thinking about my proof. Any input is appreciated Homework Statement "Let (X, ||.||) be a complete normed linear space and Y \subsetX be a non-empty subspace of X. Then (Y, ||.||) is a normed linear space...
  5. A

    Are Noether charges a rep of the generators on the Hilbert space

    I'm trying to understand the relationship between conserved charges and how operators transform. I know that we can find conserved charges from Noether's theorem. If (for internal symmetries) I call them Q^a = \int d^3x \frac{\partial L}{\partial \partial_0 \phi_i} \Delta \phi_i^a then is it...
  6. S

    An Introduction to Hilbert Space: Physically Explained

    I'm in Quantum 1, and the professor briefly mentioned Hilbert Space. I'm having a difficult time finding a non-technical description of what Hilbert Space is. Could someone give me a brief description of what it is physically, rather than mathematically?
  7. B

    The projetive Hilbert space of coherent state.

    I want to know the projective Hilbert space of coherent state and squeezed state.Thank you very much!
  8. M

    Linear operator on Hilbert space with empty spectrum

    Homework Statement Much as the title says, I need to construct an example of a linear operator on Hilbert space with empty spectrum. I can very easily construct an example with empty point-spectrum (e.g. the right-shift operator on l_2), but this has very far from empty spectrum. If I...
  9. snoopies622

    Confirming Uncertainty: Electromagnetic Fields in Hilbert Space

    I think this is right, but could someone confirm (or deny) this for me? While a particle like an electron - or a finite set of particles for that matter - is represented by a single normed vector in Hilbert space which is acted on by operators such as ones for energy, position and momentum...
  10. B

    Using Correlation :Random Variables as a Normed Space (Banach, Hilbert maybe.?)

    Hi, everyone: I have been curious for a while about the similarity between the correlation function and an inner-product: Both take a pair of objects and spit out a number between -1 and 1, so it seems we could define a notion of orthogonality in a space of random variables, so...
  11. G

    Exploring the Connection Between Hilbert Space & Space-Time

    What is the relation between Hilbert Space and space-time? Are the two disjoint or is there something relating the two?
  12. M

    Example of a linear subset of Hilbert space that is not closed

    Homework Statement Prove that for a linear set M a subset of Hilbert space, that the set perpendicular to the set perpendicular to M is equal to M iff M is closed. The Attempt at a Solution I already have my proof -- but what is an example of a linear subset of H that is not closed? I think...
  13. G

    Show that an orthonormal(ON) sequence is also a ON-basis in a Hilbert Space

    1. Problem description Let (e_n)_{n=1}^{\infty} be an orthonormal(ON) basis for H (Hilbert Space). Assume that (f_n)_{n=1}^{\infty} is an ON-sequence in H that satisfies \sum_{n=1}^{\infty} ||e_n-f_n|| < 1 . Show that (f_n)_{n=1}^{\infty} is an ON-basis for H. Homework Equations...
  14. P

    What are the properties of Rigged Hilbert Space compared to Hilbert Space?

    So I was recently learned that for some square integrable position wave-functions in Hilbert Space have the momentum function is not square integrable. Thus the momentum function are not in hilbert space. However, due to "Fourier's Trick" Dirac discovered for quantum mechanics, the momentum...
  15. K

    Orthogonal Projection onto Hilbert Subspace

    Homework Statement I have a fixed unitary matrix, say X_d \in\mathfrak U(N) and a skew Hermitian matrix H \in \mathfrak u(N) . Consider the trace-inner product [tex] \langle A,B \rangle = \text{Tr}[A^\dagger B ] [/itex] where the dagger is the Hermitian transpose. I'm trying to find the...
  16. B

    An inner product must exist on the set of all functions in Hilbert space

    Homework Statement Show that \int {{f^*}(x)g(x) \cdot dx} is an inner product on the set of square-integrable complex functions. Homework Equations Schwarz inequality: \left| {\int {{f^*}(x)g(x) \cdot dx} } \right| \le \sqrt {\int {{{\left| {f(x)} \right|}^2} \cdot dx} \int {{{\left|...
  17. A

    Finding Orthonormal Basis of Hilbert Space wrt Lattice of Subspaces

    I have a Hilbert space H; given a closed subspace U of H let PU denote the orthogonal projection onto U. I also have a lattice L of closed subspaces of H, such that for all U and U' in L, PU and PU' commute. The problem is to find an orthonormal basis B of H, such that for every element b of B...
  18. L

    Compact Operators on a Hilbert Space

    Hello, I hope I am asking this in the right area of the forums. My teacher wrote the following formula down at our last meeting, and I was wondering if it was true ( \mathcal{H} is the infinite dimension separable Hilbert space): \mathcal{K} (\mathcal{H}) \approx \mathcal{K} (\mathcal{H}...
  19. L

    Compact Operators on a Hilbert Space

    Hello, I hope I am asking this in the right area of the forums. I wanted to ask if the following formula is true (assuming H is infinite dimensional and separable): \mathcal{K} (\mathcal{H}) \approx \mathcal{K} (\mathcal{H} \oplus \mathcal{H} \oplus \mathcal{H} \oplus \mathcal{H})\approx...
  20. tom.stoer

    L² Hilbert space, bound states, asymptotics of wave functions

    Hi, I asked this question in the quantum physics forum https://www.physicsforums.com/showthread.php?t=406171 but (afaics) we could not figure out a proof. Let me start with a description of the problem in quantum mechanical terms and then try to translate it into a more rigorous mathematical...
  21. A

    Exploring the Differences between H1 & H2 Hilbert Spaces

    Hilbert Space... Can somebody tell me the difference between H1 & H2 hilbert spaces?
  22. tom.stoer

    L² Hilbert space, bound states, asymptotics of wave functions

    Hi, I discussed this with some friends but we could not figure out a proof. Usually when considering bound states of the Schrödinger equation of a given potential V(x) one assumes that the wave function converges to zero for large x. One could argue that this is due to the requirement...
  23. M

    Solving Spin 1/2 Interactions with Hilbert Space Dimensions and J$^2$

    Homework Statement three distiguishable spin 1/2 particles interact via H = \lamda ( S_1 \cdot S_2 + S_2 \cdot S_3 + S_3 \cdot S_1 ) a) What is the demension of the hilbert space? b) Express H in terms of J^2 where J = S_1 + S_2 + S_3 c) I then need to find the energy and...
  24. F

    Psychologist wants to do the Hilbert thing

    no idea what could be on the final list when it's released. I wonder what people here think: http://www.physorg.com/news190538259.html
  25. V

    Inner product of Hilbert space functions

    this question is in reference to eq 3.9 and footnote 6 in griffith's intro to quantum mechanics consider a function f(x). the inner product <f|f> = int [ |f(x)|^2 dx] which is zero only* when f(x) = 0 only points to footnote 6, where Griffith points out: "what about a function that is...
  26. E

    Linear Operators in Hilbert Space - A Dense Question

    Let H be a Hilbert space and let S be the set of linear operators on H. Is there a proper subset of S that is dense in S?
  27. S

    What is the Formula for Entries in an Nxn Hilbert Matrix?

    \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} \ldots & \ldots & \frac{1}{n}\\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \ldots & \ldots & \frac{1}{n + 1}\\ \frac{1}{3} & \frac{1}{4} & \right \frac{1}{5}\ldots & \ldots & \frac{1}{n + 2}\\ \vdots & \vdots & \vdots & \ddots &...
  28. Z

    Understanding Hilbert Space: A Simplified Explanation

    I was wondering what is Hilbert Space exactly? I read the Wikipedia page, but its one of those situations u understand what your reading but don't full grasp the concept. I was just hoping someone could explain it to me.
  29. strangerep

    Interacting theory lives in a different Hilbert space [ ]

    In article #34 of a recent thread about Haag's theorem, i.e., https://www.physicsforums.com/showthread.php?t=334424&page=3 a point of view was mentioned which I'd like to discuss further. Here's the context: I think I see a flaw in the argument above. Suppose I want to know the...
  30. C

    Fluctuation in terms of Hilbert space formalsm

    This will sound like a very amateur question but please read: I have been puzzled for a while about the *precise* mathematical meaning of "quantum fluctuation". I know what a classical fluctuation is (as found in classical statistical dynamics). I also know what a superposition is. These seem...
  31. K

    Constructing a Sequence of Continuous Functions in Hilbert Space

    Homework Statement Let f(x) be the discontinuous function f(x)=e^{-x},\text{for }x>0 f(x)=x,\text{for }x\leq 0 Construct explicitly a sequence of functions f_n(x), such that ||f_n(x)-f(x)||<\frac{1}{n}, and f_n(x) is a continuous function of x, for any finite n. Here ||\;|| represents...
  32. MathematicalPhysicist

    Proving the Continuity of Norms in Hilbert Spaces for q>=p

    Homework Statement Prove that for q>=p and any f which is continuous in [a,b] then || f ||_p<=c* || f ||_q, for some positive constant c. Homework Equations The norm is defined as: ||f||_p=(\int_{a}^{b} f^p)^\frac{1}{p}. The Attempt at a Solution Well, I think that because f is...
  33. A

    Hilbert space dimension contradiction

    Hi, I was wondering how the state vector for a particle in a 1-D box can be expanded as a linear combination of the discrete energy eigenkets as well as a linear combination of the continuous position eigenkets. It seems to me that this is a contradiction because one basis is countable whereas...
  34. G

    Hilbert Space: f(x) = x^n on Interval (0,1)

    Homework Statement for what range of n is the function f(x) = x^n in Hilbert space, on the interval (0,1)? assume n is real. Homework Equations functions in Hilbert space are square integrable from -inf to inf The Attempt at a Solution I am having trouble with the language of the...
  35. N

    What is the difference between Hilbert Spaces and other metric spaces?

    I've been reading about them (briefly), and can't see any large difference between them and metric spaces or even euclidean spaces for that matter. What am I missing? I read a Hilbert Space is a complete inner product space. But a metric space is a complete space as well with the only...
  36. D

    Function mapping a Hilbert plant to itself (Geometry)

    Let F: H ->H be a map of a Hilbert plane into itself. For any point A, denote F(A) by A`. Assume that AB is congruent to A'B' for any two points A,B. How can I prove that this map is in fact a bijection? In a arbitrary Hilbert plane, one can not be certain that square roots exist, so...
  37. E

    Diffeomorphism Invariance in Einstein's Gravitation Theory Explained

    Why is the Hilbert Action and the matter actionof the Einstein's Gravitation theory diffeomorphism invariant, as Wald said in his textbook General Relativity on Page 456 and Sean Carroll said in his Spacetime and Geometry on Page 435. In other words,why do we have to set \delta S_{M} to be...
  38. K

    About bases of complex (Hilbert) space

    Hi there, In 3-dimensional real linear space, the simplest bases can be taken as the canonical bases \hat{x} = \left(\begin{matrix}1 \\ 0 \\ 0\end{matrix}\right), \qquad \hat{y} = \left(\begin{matrix}0 \\ 1 \\0\end{matrix}\right), \qquad \hat{z} = \left(\begin{matrix}0 \\ 0 \\...
  39. K

    Constructing Unitary Matrices for Rotations in Hilbert Space

    In real linear space, we can use the rotation matrix in terms of Euler angle to rotate any vector in that space. I know in hilbert space, the corresponding rotation matrix is so-called unitary operator. I wonder how do I construct such matrix to rotate a complex vector in hilbert space? Can I...
  40. Fredrik

    Construction of a Hilbert space and operators on it

    When quantizing a classical field theory, e.g. Klein-Gordon theory, the Hilbert space of one-particle states is taken to be a set of equivalence classes of (Lebesgue) measurable and square integrable solutions of the classical field equation, but how do you use the classical theory to construct...
  41. Fredrik

    The Hilbert space of non-relativistic QM

    What exactly is the Hilbert space of a massive spin 0 particle in non-relativistic QM? The following construction defines a Hilbert space H, but is it the right one? We could e.g use some subspace of H instead. And what if we use Riemann integrals instead of Lebesgue integrals? Let G be the set...
  42. D

    Hilbert-Schmidt Norm: Calculation & Solution

    Homework Statement http://img523.imageshack.us/img523/4456/56166304yr3.png Homework Equations http://img356.imageshack.us/img356/2793/40249940is8.png The Attempt at a Solution I defined K:[a,b] --> [a,b] with k(s,t) = \frac{(t-s)^{n-1}}{(n-1)!} I found for the norm: \int_a^b \int_a^b...
  43. diegzumillo

    Are Hilbert spaces uniquely defined for a given system?

    Hi there! Repeating the question on the title: Are Hilbert spaces uniquely defined for a given system? I started to think about this when I was reading about Schrödinger and Heisenberg pictures/formulations. From my understanding, you can describe a system analyzing the time dependent...
  44. O

    Banach Space that is NOT Hilbert

    I know that all Hilbert spaces are Banach spaces, and that the converse is not true, but I've been unable to come up with a (hopefully simple!) example of a Banach space that is not also a Hilbert space. Any help would be appreciated!
  45. V

    Dimension of Hilbert Space in Quantum Mechanics

    We know that the Hilbert space of wavefunctions can be spanned by the |x> basis which is a non-countable set of infinite basis kets. Now consider the case of a particle in a box. We say that the space can be spanned by the energy eigenkets of the hamiltonian (each eigenket corresponds to an...
  46. B

    How can we reconcile the different vector dimensions in QM equations?

    In QM we require that an operator acting on a state vector gives the corresponding observable multiplied by the vector. Spin up can be represented by the state vector \left( \begin{array}{c} 1 \\ 0 \end{array} \right) , while spin down can be represented by \left( \begin{array}{c} 0 \\ 1...
  47. J

    Converging Inner Product Sequence in Hilbert Space

    Homework Statement Let H be a Hilbert space. Prove that if \left\{ x _{n} \right\} is a sequence such that lim_{n\rightarrow\infty}\left\langle x_{n},y\right\rangle exists for all y\in H, then there exists x\in H such that lim_{n\rightarrow\infty} \left\langle x_{n},y\right\rangle =...
  48. G

    Proving Compactness of Hilbert-Schmidt Operators in a Seperable Hilbert Space

    Hi there, Can anyone give me an hint/idea of how to prove Hilbert-Schmidt operators are compact? More specifically, if X is a seperable Hilbert space and T:X->X is a linear operator such that there exists an orthonormal basis (e_{n}) such that \sum_{n} ||T(e_{n})||^{2}<\infty then show that T...
Back
Top