Inner product Definition and 312 Threads

  1. cianfa72

    I Inner product vs dot/scalar product

    Hi, from Penrose book "The Road to Reality" it seems to me inner product and dot/scalar product are actually different things. Given a vector space ##V## an inner product ## \langle . | . \rangle## is defined between elements (i.e. vectors) of the vector space ##V## itself. Differently...
  2. nomadreid

    I Dot product, inner product, and projections

    In simple Euclidean space: From trig, we have , for u and v separated by angle Θ, the length of the projection of u onto v is |u|cosΘ; then from one definition of the dot product Θ=arcos(|u|⋅|v|/(u⋅v)); putting them together, I get the length of the projection of u onto v is u⋅v/|v|. Then I...
  3. Euge

    POTW A Modified Basis in an Inner Product Space

    Given an orthonormal basis ##\{e_1,\ldots, e_n\}## in a complex inner product space ##V## of dimension ##n##, show that if ##v_1,\ldots, v_n\in V## such that ##\sum_{j = 1}^n \|v_j\|^2 < 1##, then ##\{v_1 + e_1,\ldots, v_n + e_n\}## is a basis for ##V##.
  4. D

    I Inner product - positive or positive semidefinite?

    Hi In QM the inner product satisfies < a | a > ≥ 0 with equality if and only if a = 0. Is this positive definite or positive semidefinite because i have seen it described as both Thanks
  5. Dario56

    I Inner and Outer Product of the Wavefunctions

    Inner product is a generalization of the dot product on spaces other than Euclidean and for vectors it is defined in the same way as the dot product. If we have two vectors $v$ and $w$, than their inner product is: $$\langle v|w\rangle = v_1w_1 + v_2w_2 + ...+v_nw_n $$ where $v_1,w_1...
  6. H

    Proving that ##T## is skew-symmetric, inner product is an integration.

    ##\langle T(f), g \rangle = \int_{0}^{1} \int_{0}^{x} f(t) dt ~ g(t) dt## As ##\int_{0}^{x} f(t) dt## will be a function in ##x##, therefore a constant w.r.t. ##dt##, we have ##\langle T(f), g \rangle = \int_{0}^{x} f(t) dt ~ \int_{0}^{1} g(t) dt## ##\langle f, T(g)\rangle = \int_{0}^{1} f(t)...
  7. M

    Is result of vector inner product retained after matrix multiplication?

    Hi, I was thinking about the following problem, but I couldn't think of any conclusive reasons to support my idea. Question: Let us imagine that we have two vectors ## \vec{a} ## and ## \vec{b} ## and they point in similar directions, such that the inner-product is evaluated to be a +ve...
  8. H

    Prove that the inner product converges

    I'm learning Linear Algebra by self and I began with Apsotol's Calculus Vol 2. Things were going fine but in exercise 1.13 there appeared too many questions requiring a strong knowledge of Real Analysis. Here is one of it (question no. 14) Let ##V## be the set of all real functions ##f##...
  9. U

    I Orthogonality of Eigenvectors of Linear Operator and its Adjoint

    Suppose we have V, a finite-dimensional complex vector space with a Hermitian inner product. Let T: V to V be an arbitrary linear operator, and T^* be its adjoint. I wish to prove that T is diagonalizable iff for every eigenvector v of T, there is an eigenvector u of T^* such that <u, v> is...
  10. K

    I Bra Ket is equivalent to inner product always?

    We denote a scalar product of two vectors ##a, b## in Hilbert space ##H## as $(a,b)$. In Bra Ket notation, we denote a vector a in Hilbert space as ##|a\rangle##. Also we say that bras belong to the dual space ##H##∗ . So Bras are linear transformations that map kets to a number. Then it...
  11. nomadreid

    I Shouldn't this definition of a metric include a square root?

    In https://mathworld.wolfram.com/InnerProduct.html, it states "Every inner product space is a metric space. The metric is given by g(v,w)= <v-w,v-w>." In https://en.wikipedia.org/wiki/Inner_product_space , on the other hand, "As for every normed vector space, an inner product space is a metric...
  12. U

    Help in showing that this inner product is zero

    The unormalised plane wave solution is given as ##u_{\vec{k}}=e^{i\vec{k}\cdot\vec{x}-i\omega t}##. I want to show that ##(u_{\vec{k}},u^{*}_{\vec{k}'})=0##. However, I don't seem to be able to get the answer through direct calculation. Any hints on how to obtain the answer?
  13. nomadreid

    I Confused about the spectrum of an observable

    This is a very elementary question, from the beginnings of quantum mechanics. For simplicity, I refer to a finite case with pure states. If I understand correctly, the spectrum of an observable is the collection of eigenvalues formed by the inner product of states and hence equal to...
  14. K

    Linear algebra inner products, self adjoint operator,unitary operation

    b) c and d): In c) I say that ##L_h## is only self adjoint if the imaginary part of h is 0, is this correct? e) Here I could only come up with eigenvalues when h is some constant say C, then C is an eigenvalue. But I' can't find two.Otherwise does b-d above look correct? Thanks in advance!
  15. patric44

    A Would it matter which inner product I choose in quantum mechanics?

    hi guys i was thinking about the inner product we choose in quantum mechanics to map the elements inside the hilbert space to real number which is given by : $$\int^{∞}_{-∞}\psi^{*}\psi\;dV$$ or in some cases we might introduce a weight function dependent on the wave functions i have , it seems...
  16. K

    MHB Determine the area, calculate the basis vectors and determine the inner product

    A coordinate system with the coordinates s and t in R^2 is defined by the coordinate transformations: s = y/y_0 and t=y/y_0 - tan(x/x_0) , where x_0 and y_0 are constants. a) Determine the area that includes the point (x, y) = (0, 0) where the coordinate system is well defined. Express the...
  17. H

    Is the Proof for a Complex Inner Product Space Correct?

    Summary:: Inner Product Spaces, Orthogonality. Hi there, This my first thread on this forum :) I encountered the above problem in Schaum’s Outlines of Linear Algebra 6th Ed (2017, McGraw-Hill) Chapter 7 - Inner Product Spaces, Orthogonality. Using some particular values for u and v, I...
  18. Ishika_96_sparkles

    I Feynman's Lectures volume III (Ch:8) -- Resolution of vector states

    In the section 8-2 dealing with resolving the state vectors, we learn that |\phi \rangle =\sum_i C_i | i \rangle and the dual vector is defined as \langle \chi | =\sum_j D^*_j \langle j |Then, the an inner product is defined as \langle \chi | \phi \rangle =\sum_{ij} D^*_j C_i \langle j | i...
  19. electrogeek

    Determining orthonormal states to a non-zero inner product

    Hi everyone, I was attempting the following past paper question below: I have found a value for the coefficient c and I think I have calculated the inner product of <x|x>. I've attached my workings below. But I'm not sure what to do next to answer the last part of the question which asks...
  20. cookiemnstr510510

    Understanding inner product space and matrix representations of Operat

    (scroll to bottom for problem statement) Hello, I am wondering if someone could break down the problem statement in simpler terms (not so math-y). I am struggling with understanding what is being asked. I will try to break it down to the best of my ability Problem statement:Consider the inner...
  21. W

    I Inner Product Between States of Multiple Particles

    $$<p_1 p_2|p_A p_B> = \sqrt{2E_1 2E_2 2E_A 2E_B}<0|a_1 a_2 a_{A}^{\dagger} a_{B}^{\dagger} |0>$$ $$=2E_A2E_B(2\pi)^6(\delta^{(3)}(p_A-p_1)\delta{(3)}(p_B-p_2) + \delta^{(3)}(p_A-p_2)\delta^{(3)}(p_B-p_1))$$ The identity above seemed easy, until I tried to prove it. I figured I could work this...
  22. D

    MHB Find Inner Product for Quadratic Form in R^3

    Let <x, x>=3x_{1}^2+2x_{2}^2+x_{3}^2-4x_{1}x_{2}-2x_{1}x_{3}+2x_{2}x_{3} be a quadratic form in V=R, where x=x_{1}e_{1}+x_{2}e_{2}+x_{3}e_{3} (in the base {e_{1},e_{2},e_{3}}. Find the inner product corresponding to this quadratic form. Is this that easy that you have to change '' second''...
  23. RikaWolf

    I Linear Algebra - Inner Product problem

    I need help to know if I'm on the right track: Prove/Disprove the following: Let u ∈ V . If (u, v) = 0 for every v ∈ V such that v ≠ u, then u = 0. (V is a vector-space) I think I need to disprove by using v = 0, however I'm not sure.
  24. Math Amateur

    MHB Is This Proof of the Annihilator of a Set Correct?

    I am reading D. J. H. Garling's book: "A Course in Mathematical Analysis: Volume II: Metric and Topological Spaces, Functions of a Vector Variable" ... ... I am focused on Chapter 11: Metric Spaces and Normed Spaces ... ... I need some help to confirm my thinking on Proposition...
  25. Math Amateur

    MHB Normed and Inner Product Spaces .... Garling, Corollary 11.3.2 ....

    I am reading D. J. H. Garling's book: "A Course in Mathematical Analysis: Volume II: Metric and Topological Spaces, Functions of a Vector Variable" ... ... I am focused on Chapter 11: Metric Spaces and Normed Spaces ... ... I need some help to fully understand the proof of...
  26. J

    MHB Integral Over Unit Sphere of Inner Product

    Problem: Prove that for any $x \in R^n$ and any $0<p<\infty$ $\int_{S^{n-1}} \rvert \xi \cdot x \rvert^p d\sigma(\xi) = \rvert x \rvert^p \int_{S^{n-1}} \rvert \xi_1 \rvert^p d\sigma(\xi)$, where $\xi \cdot x = \xi_1 x_1 + ... + \xi_n x_n$ is the inner product in $R^n$. Some thinking... I...
  27. E

    I Inner product of a vector with an operator

    So say our inner product is defined as ##\int_a^b f^*(x)g(x) dx##, which is pretty standard. For some operator ##\hat A##, do we then have ## \langle \hat A ψ | \hat A ψ \rangle = \langle ψ | \hat A ^* \hat A | ψ \rangle = \int_a^b ψ^*(x) \hat A ^* \hat A ψ(x) dx##? This seems counter-intuitive...
  28. P

    I Complex conjugate of an inner product

    Hi everyone. Yesterday I had an exam, and I spent half the exam trying to solve this question. Show that ##\left\langle\Psi\left(\vec{r}\right)\right|\hat{p_{y}^{2}}\left|\phi\left(\vec{r}\right)\right\rangle =\left\langle...
  29. SebastianRM

    I Understanding the Hermitian Conjugate in Inner Products

    Hey, I am currently reading over the linear algebra section of the "introduction to quantum mechanics" by Griffiths, in the Inner product he notes: "The inner product of two vector can be written very neatly in terms of their components: <a|B>=a1* B1 + a2* B ... " He also took upon the...
  30. beefbrisket

    I Computing inner products of spherical harmonics

    In this video, at around 37:10 he is explaining the orthogonality of spherical harmonics. I don't understand his explanation of the \sin \theta in the integrand when taking the inner product. As I interpret this integral, we are integrating these two spherical harmonics over the surface of a...
  31. Onezimo Cardoso

    How to Prove Inequality for Convex Sets in R^n?

    Homework Statement Let ##C \subset \mathbb{R}^n## a convex set. If ##x \in \mathbb{R}^n## and ##\overline{x} \in C## are points that satisfy ##|x-\overline{x}|=d(x,C)##, proves that ##\langle x-\overline{x},y-\overline{x} \rangle \leq 0## for all ##y \in C##. Homework Equations By definition...
  32. Onezimo Cardoso

    Orthogonal Vectors in Rn Problem

    Homework Statement Given ##a\neq b## vectors of ##\mathbb{R}^n##. Determine ##c## which lies in the line segment ##[a,b]=\{a+t(b-a) ; t \in [0,1]\}##, such that ##c \perp (b-a)##. Conclude that for all ##x \in [a,b]##, with ##x\neq c## it is true that ##|c|<|x|##. Homework Equations The first...
  33. Onezimo Cardoso

    Inner product - Analysis in Rn problem

    Homework Statement Let ##x,y \in \mathbb{R^n}## not null vectors. If for all ##z \in \mathbb{R^n}## that is orthogonal to ##x## we have that ##z## is also orthogonal to ##y##, prove that ##x## and ##y## are multiple of each other. Homework Equations We can use that fact that ##<x ...
  34. Mr Davis 97

    I Real function inner product space

    Wolfram says that an example of an inner product space is the vector space of real functions whose domain is an closed interval [a,b] with inner product ##\langle f, g\rangle = \int_a^b f(x) g(x) dx##. But ##1/x## is a real function, and ##\langle 1/x, 1/x\rangle## does not converge... So how is...
  35. renec112

    Expectation value of raising and lower operator

    I am practicing old exams. I tried my best but looking at an old and a bit unreliable answer list, and i am not getting the same result. Homework Statement At time ##t=0## the nomralized harmonic oscialtor wavefunction is given by: ## \Psi(x,0) = \frac{1}{\sqrt{3}}(\psi_0(x) + \psi_1(x) + i...
  36. K

    I Basis Vectors & Inner Product: A No-Nonsense Introduction

    I read from this page https://properphysics.wordpress.com/2014/06/09/a-no-nonsense-introduction-to-special-relativity-part-6/ that the basis vectors are the canonical basis vectors in any coordinate system. This seems to be wrong, because if that was the case the metric would be the identity...
  37. K

    I Normalized basis when taking inner product

    Consider that a vector can be represented in two different basis. My question is do we need to normalize both basis before taking the inner product? What motivates this question is because I found out that the inner product of a vector having components ##a,b## in the normalized polar basis of...
  38. L

    Inner Product, Triangle and Cauchy Schwarz Inequalities

    Homework Statement Homework Equations I am not sure. I have not seen the triangle inequality for inner products, nor the Cauchy-Schwarz Inequality for the inner product. The only thing that my lecture notes and textbook show is the axioms for general inner products, the definition of norm...
  39. F

    Insights Hilbert Spaces and Their Relatives - Comments

    Greg Bernhardt submitted a new PF Insights post Hilbert Spaces and Their Relatives Continue reading the Original PF Insights Post.
  40. N

    Laplace expansion of the inner product (Geometric Algebra)

    Homework Statement Prove that ##\vec {a} \cdot (\vec {b} \wedge \vec {C_r}) = \vec {a} \cdot \vec {b} \vec {C_r} - \vec {b} \wedge (\vec {a} \cdot \vec {C_r})##. Note that ##\vec {a}## is a vector, ##\vec {b}## is a vector, and ##\vec {C_r}## is an r-blade with ##r > 0##. Also, the dot...
  41. hideelo

    A I'm getting the wrong inner product of Fock space

    I am trying to follow modern QFT by Tom Banks and I am having an issue with literally the first equation. He claims that beginning from ## |p_1 , p_2, ... , p_k> \: = \: a^\dagger (p_1) a^\dagger (p_2) \cdots a^\dagger (p_k)|0> ## with the commutation relation ##[a (p),a^\dagger (q)]_\pm \: =...
  42. S

    I Do Two Eigenvectors Form a Hilbert Space with Their Inner Product?

    Hi, what is the physical meaning, or also the geometrical meaning of the inner product of two eigenvectors of a matrix? I learned from the previous topics that a vectors space is NOT Hilbert space, however an inner product forms a Hilbert space if it is complete. Can two eigenvectors which...
  43. S

    A Eigenvectors and matrix inner product

    Hi, I am trying to prove that the eigevalues, elements, eigenfunctions or/and eigenvectors of a matrix A form a Hilbert space. Can one apply the inner product formula : \begin{equation} \int x(t)\overline y(t) dt \end{equation} on the x and y coordinates of the eigenvectors [x_1,y_1] and...
  44. Kara386

    I Define inner product of vector fields EM

    I'm reading a textbook on electromagnetism. It says that for two vector fields ##\textbf{F}(\textbf{r})## and ##\textbf{G}(\textbf{r})## their inner product is defined as ##(\textbf{F},\textbf{G}) = \int \textbf{F}^{*}\cdot \textbf{G} \thinspace d^3\textbf{r}## And that if ##\textbf{F}## is...
  45. I

    B Inner product of functions of continuous variable

    I am new to quantum mechanics and I have recently been reading Shankar's book. It was all good until I reached the idea of representing functions of continouis variable as kets for example |f(x)>. The book just scraped off the definition of inner product in the discrete space case and refined it...
  46. P

    Show this integral defines a scalar product.

    Hi, I'm stuck on a problem from my quantum homework. I have to show <p1|p2> = ∫(from -1 to 1) dx (p1*)(p2) is a scalar product (p1 and p2 are single variable complex polynomials). I've figured out how to show that they satisfy linearity and positive definiteness, but I'm completely stuck on...
  47. lawlieto

    I Inner Product vs. Dot Product Confusion in Quantum Physics?

    I started learning quantum, and I got a bit confused about inner and dot products. I've attached 2 screenshots; 1 from Wikipedia and 1 from an MIT pdf I found online. Wikipedia says that a.Dot(b) when they're complex would be the sum of aibi where b is the complex conjugate. The PDF from MIT...
  48. O

    How Do I Show the Fourth Property for Inner Product in This Homework?

    Homework Statement Homework Equations The Attempt at a Solution [/B] I could show that the first of the three properties are valid for any value of a,b,c but I couldn’t find a way to show the forth one. Follow all the procedures I already did:
  49. Mr Davis 97

    I Non-negativity of the inner product

    The inner product axioms are the following: ##\text{(a)} \ \langle x+z,y \rangle = \langle x,y \rangle + \langle z,y \rangle## ##\text{(b)} \ \langle cx,y \rangle = c\langle x,y \rangle## ##\text{(c)} \ \overline{\langle x,y \rangle} = \langle y,x \rangle## ##\text{(d)} \ \langle x,x \rangle > 0...
  50. Mr Davis 97

    Proving a fact about inner product spaces

    Homework Statement Let ##V## be a vector space equipped with an inner product ##\langle \cdot, \cdot \rangle##. If ##\langle x,y \rangle = \langle x, z\rangle## for all ##x \in V##, then ##y=z##. Homework EquationsThe Attempt at a Solution Here is my attempt. ##\langle x,y \rangle = \langle x...
Back
Top