Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Integers
Recent contents
View information
Top users
Description
An integer (from the Latin integer meaning "whole") is colloquially defined as a number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, 5+1/2, and √2 are not.
The set of integers consists of zero (0), the positive natural numbers (1, 2, 3, ...), also called whole numbers or counting numbers, and their additive inverses (the negative integers, i.e., −1, −2, −3, ...). The set of integers is often denoted by the boldface (Z) or blackboard bold
(
Z
)
{\displaystyle (\mathbb {Z} )}
letter "Z"—standing originally for the German word Zahlen ("numbers").ℤ is a subset of the set of all rational numbers ℚ, which in turn is a subset of the real numbers ℝ. Like the natural numbers, ℤ is countably infinite.
The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers. In fact, (rational) integers are algebraic integers that are also rational numbers.
View More On Wikipedia.org
Forums
Back
Top