Integral Definition and 1000 Threads

  1. T

    A Non solvable integral? (dx/dt)^2 dt

    The integral is (dx/dt)^2 dt, where x=x(t) so it can't be just x + C. The non linear system for whom wants to know how did I get to that point is: d(dx/dt)/dt = sqrt(a^2+b^2)*sin(x+alfa+phi) - Kd*(dx/dt); where alfa = atan(a/b), phi = constant angle, Kd = constant coefficient. After...
  2. R

    Expressing Feynman Green's function as a 4-momentum integral

    I am a bit confused on how we can just say that (z',p) form a 4-vector. In my head, four vectors are sacred objects that are Lorentz covariant, but now we introduced some new variable and say it forms a 4-vector with momentum. I understand that these are just integration variables but I still do...
  3. Viona

    Integral with different variables

    I want to do this integral in the picture: where r1 and a are constants. I know I can integrate each part separately. There will be an integral with respect to r2 multiplied by integral with respect to theta2 and the last one with respect to phi2. But the term under square root confuses me. Can...
  4. Leo Liu

    How to take the double integral of a data set with respect to time

    Question: Suppose I have a data file for the acceleration of an object after every ## \Delta t_i##, how do I obtain the displacement of it? Context: Integral in a PID loop, although not exactly what I am asking as one is sum of error: $$\int_0^T \int_0^T \ddot {\vec \theta(t)}dtdt$$ the other...
  5. mcastillo356

    I Express the limit as a definite integral

    Hi, PF, there goes the definition of General Riemann Sum, and later the exercise. Finally one doubt and my attempt: (i) General Riemann Sums Let ##P=\{x_0,x_1,x_2,\cdots,x_n\}##, where ##a=x_0<x_1<x_2<\cdots<x_n=b##, be a partition of ##[a,b]##, having norm ##||P||=\mbox{max}_{1<i<n}\Delta...
  6. chwala

    Integral of e^cosx: Answers Sought

    I just came across this and it seems we do not have a definite answer...there are those who have attempted using integration by parts; see link below...i am aware that ##\cos x## has no closed form...same applies to the exponential function...
  7. ergospherical

    I Solving Stat Mech Integral with Wolfram Alpha

    Looking to evaluate an integral of the form $$\int_0^{\infty} \frac{p^2 dp}{\mathrm{exp}(a\sqrt{p^2+b^2}) \pm 1} $$Changing to ##x(p) = a\sqrt{p^2 + b^2}## gives $$\frac{1}{a^3} \int_0^{\infty} \frac{\sqrt{x^2-(b/a)^2}}{e^x \pm 1} dx$$Wolfram alpha doesn't tell me anything useful, sadly.
  8. Euge

    POTW Definite Integral of a Rational Function

    Evaluate the definite integral $$\int_0^\infty \frac{x^2 + 1}{x^4 + 1}\, dx$$
  9. E

    I Parameter Integration of Bubble Integral

    Referring to this link : https://qcdloop.fnal.gov/bubg.pdf Using Mathematica Integrate command to solve it does not give the result stated here but I am unclear as to how they got to the result in the 4th line. It is clear that the integrand (1st line) can diverge for certain values of the...
  10. M

    A Can you help to solve this integral? (resin viscosity research)

    I have tried WolfarmAlpha but it could help me. Please note this is not a homework exercise. I am a researcher and I am looking to model viscosity development of resin. there I came across with this express :) $$\int{\frac{1}{a\cdot e^{bx}+c\cdot e^{kx}}dx}$$
  11. H

    I Original definition of Riemann Integral and Darboux Sums

    Given a function ##f##, interval ##[a,b]##, and its tagged partition ##\dot P##. The Riemann Sum is defined over ##\dot P## is as follows: $$ S (f, \dot P) = \sum f(t_i) (x_k - x_{k-1})$$ A function is integrable on ##[a,b]##, if for every ##\varepsilon \gt 0##, there exists a...
  12. S

    Integral of x^n using Reimann sums

    We don't need to worry about the n = -1 so we can assume that the function is continuous on any interval [a,b] where a, b are real numbers if I separate my interval into N partitions, then the right side values in my interval are a + \frac{b-a}{N}, a + 2 \frac{b-a}{N}, ... , a + k...
  13. N

    I Triple equation for integral on a graph

    Hi, so I'm trying to find the volume of a shape using integral, I found the equation of one plane in 3D space but the second one is something like that, which I cannot write in integral as a function: ##\frac{2(2x-a)}{a}=-\frac{2(6y-a\sqrt3)}{a\sqrt3}=\frac{2z-a\sqrt3}{a\sqrt3}## In the 3D...
  14. G

    Can a human calculate this without a calculator?

    my notebook says that we can rewrite the integral $$\int {75\sin^3⁡(x) \cos^2⁡(x)dx}$$ as $$\int {75 \cos^2(x)\sin(x)dx} - \int {75\sin(x)\cos^4(x)dx}$$ however, i have literally no idea how it got to this point, and i unfortunately can't really provide an "attempt at a solution" for this...
  15. Pipsqueakalchemist

    Engineering (material science) Fatigue life prediction using integral

    So for this question, I understand the math but just wanted to be clear on a few things. So I had this question on my midterm but instead of tensile and compressive stresses, it was tensile and tensile stress. I initially thought that the delta sigma in the integral was the maximum stress so in...
  16. Addez123

    Calculate surface integral on sphere

    I'm supposed to do the surface integral on A by using spherical coordinates. $$A = (rsin\theta cos\phi, rsin\theta sin\phi, rcos\theta)/r^{3/2}$$ $$dS = h_{\theta}h_{\phi} d_{\theta}d_{\phi} = r^2sin\theta d_{\theta}d_{\phi}$$ Now I'm trying to do $$\iint A dS = (rsin\theta cos\phi, rsin\theta...
  17. P

    Integral Calculation: Compute l/sqrt(x2+l2)

    I need compute the integral $$(2\pi)^{-3} \int d^3p e^{-l|p|}e^{i \vec{x} \cdot \vec{p}}$$ The problem does not specified the limits of integration The result is $$\frac{1}{\pi^2} \frac{l}{\sqrt{\vec{x}^2+l^2}}$$I saw the references about t-Student and I had not achieved it. I have tried to...
  18. M

    No Limits of Integration for Electric Field Integral?

    For this problem, The solution is, However, why have they not included limits of integration? I think this is because all the small charge elements dq across the ring add up to Q. However, how would you solve this problem with limits of integration? Many thanks!
  19. P

    I Change of Variables in Double Volume Integral

    In Greiner's Classical Electromagnetism book (page 126) he has a derivation equivalent to the following. $$\int_V d^3r^{'} \nabla \int_V d^3r^{''}\frac {f(\bf r^{''})}{|\bf r + \bf r^{'}- \bf r^{''}|}$$ $$ \bf z = \bf r^{''} - \bf r^{'} $$ $$\int_V d^3r^{'} \nabla \int_V d^3z \frac {f(\bf z +...
  20. J

    Integral (-∞ to ∞) of Zero and ∞/∞

    Are both integral on picture below equal zero? I think both are zero, area of zero section under function must be zero. If M=∞, b=∞ , what is reslut? Logically ∞/∞ will be 1..but...
  21. WMDhamnekar

    Computing line integral using Stokes' theorem

    ##curl([x^2z, 3x , -y^3],[x,y,z]) =[-3y^2 ,x^2,3]## The unit normal vector to the surface ##z(x,y)=x^2+y^2## is ##n= \frac{-2xi -2yj +k}{\sqrt{1+4x^2 +4y^2}}## ##[-3y^2,x^2,3]\cdot n= \frac{-6x^2y +6xy^2}{\sqrt{1+4x^2 + 4y^2}}## Since ##\Sigma## can be parametrized as ##r(x,y) = xi + yj +(x^2...
  22. H

    Is an operator (integral) Hermitian?

    Knowing that to be Hermitian an operator ##\hat{Q} = \hat{Q}^{\dagger}##. Thus, I'm trying to prove that ##<f|\hat{Q}|g> = <\hat{Q}f|g> ##. However, I don't really know what to do with this expression. ##<f|\hat{Q}g> = \int_{-\infty}^{\infty} [f(x)^* \int_{-\infty}^{\infty} |x> <x| dx f(x)] dx##...
  23. WMDhamnekar

    Is the Calculation of the Vector Line Integral Over a Square Correct?

    Author's answer: Recognizing that this integral is simply a vector line integral of the vector field ##F=(x^2−y^2)i+(x^2+y^2)j## over the closed, simple curve c given by the edge of the unit square, one sees that ##(x^2−y^2)dx+(x^2+y^2)dy=F\cdot ds## is just a differentiable 1-form. The...
  24. P

    Introduce an integral function in a spreadsheet (Excel MS)

    I found some interesting equations on cosmology and I was wondering how to introduce the integral in an excel sheet: "Paste ( .443s^3+1)^(-1/2) in for the integrand, type in s for the variable and 1 to 2 for the limits. Press submit, then change 2→3→4→5 and repeat." (from the thread...
  25. N

    I Why can't we just integrate a simple function?

    Can anyone explain to me why the second one is the right? (See the attachment)
  26. T

    Integration of acceleration in polar coordinates

    I made this exercise up to acquire more skill with polar coordinates. The idea is you're given the acceleration vector and have to find the position vector corresponding to it, working in reverse of the image. My attempts are the following, I proceed using 3 "independent" methods just as you...
  27. Euge

    POTW Contour Integral Representation of a Function

    Suppose ##f## is holomorphic in an open neighborhood of the closed unit disk ##\overline{\mathbb{D}} = \{z\in \mathbb{C}\mid |z| \le 1\}##. Derive the integral representation $$f(z) = \frac{1}{2\pi i}\oint_{|w| = 1} \frac{\operatorname{Re}(f(w))}{w}\,\frac{w + z}{w - z}\, dw +...
  28. M

    Gauss' law in line integral, Q=##ϵ_0 ∮E.n dl=-ϵ_0 ∮∂ϕ/∂n dl##

    I know the Gauss law for surface integral to calculate total charge by integrating the normal components of electric field around whole surface . but in above expression charge is calculated using line integration of normal components of electric field along line. i don't understand this...
  29. S

    B Asking about integral notation

    Why should it be ##\int_{a}^{x} f(t)dt## ? Couldn't it be like this: Let F(x) = ##\int f(x)dx## so ##\int_{a}^{x} f(x)dx## = F(x) - F(a) Thanks
  30. H

    Improper integral of a normal function

    I'm trying to solve an improper integral, but I'm not familiar with this kind of integral. ##\int_{-\infty}^{\infty} (xa^3 e^{-x^2} + ab e^{-x^2}) dx## a and b are both constants. From what I found ##\int_{-\infty}^{\infty} d e^{-u^2} dx = \sqrt{\pi}##, where d is a constant and...
  31. P

    Evaluating the Integral of a Vector Field Using Cauchy-Schwarz Inequality

    Here is my attempt (Note: ## \left| \int_{C} f \left( z \right) \, dz \right| \leq \left| \int_C udx -vdy +ivdx +iudy \right|## ##= \left| \int_{C} \left( u+iv, -v +iu \right) \cdot \left(dx, dy \right) \right| ## Here I am going to surround the above expression with another set of...
  32. M

    Integral of f·g ≠ integral f · integral g [True or False]

    My answer is False! I think must stated "in general," in the beginning of the statement. Cause this could be true if f or g = zero. There may be other cases also. Is my answer right?
  33. SchroedingersLion

    I Integral change of variables formula confusion

    Greetings all. I just got confused by the following. Consider volume integral, for simplicity in 1D. $$ V(A) = \int_{A} dz. $$ If ##z## can be written as an invertible function of ##x##, i.e. ##z=f(x)##, we know the change of variables formula $$ V(A)=\int_{A} dz= \int_{z^{-1}(A)} |z'(x)|dx...
  34. P

    I What is the purpose of the vector α in the rotational work integral?

    This brief worked example from a textbook section on the method of images is confusing me. Specifically I am confused about the vector α in the integral on the last line. When α (or θ) is an angle, I've only ever seen the vector quantity α (or θ) as a polar vector in the plane. But here...
  35. H

    Help with a line integral please

    ∫zds=∫acos(t)*( (acos(2t))^2+(2asin(t))^2+(-asin(t))^2 )^1/2 dt , (0≤t≤pi/2) Simplified : ∫a^2cos(t)*(cos^2(2t)+5sin^2(t) )^1/2 dt , (0≤t≤pi/2) However here i get stuck and i can´t find a way to rewrite it better or to integrate as it is. Can i please get some help in this?
  36. karush

    Solving this integral with u substitution

    Evaluate ##\displaystyle\int_{0}^{3}\frac{x+3}{\sqrt{x^{3}+1}}dx+5## W|A returned 11.7101 ok subst is probably just one way to solve this so ##u=x^{3}+1 \quad du= 3x^2##
  37. P

    Calculating eletric potential using line integral of electric field

    So, I am able to calculate the electric potential in another way but I know that this way is supposed to work as well, but I don't get the correct result. I calculated the electric field at P in the previous exercise and its absolute value is $$ E = \frac {k Q} {D^2-0.25*l^2} $$ This is...
  38. M

    B Where Did My Neglect of High-Order Terms Go Wrong in Integral Sums?

    Hello. As is known, we can neglect high-order term in expression ##f(x+dx)-f(x)##. For ##y=x^2##: ##dy=2xdx+dx^2##, ##dy=2xdx##. I read that infinitesimals have property: ##dx+dx^2=dx## I tried to neglect high-order terms in integral sum (##dx^2## and ##4dx^2## and so on) and I obtained wrong...
  39. T

    I Is there an integral version of Newton's law of gravity?

    $$F=G\frac{m_1 m_2}{r^2}$$ is presumably for point masses. If the masses weren't a point masses, then wouldn't you need a version of the formula that sums up the gravity for each infinitesimal portion of the masses? And for my money, "summing up" in physics is integrals, right? So would it be...
  40. WMDhamnekar

    Evaluate the surface integral ##\iint\limits_{\sum} f\cdot d\sigma##

    But the answer provided is ##\frac{15}{4} ## How is that? What is wrong in the above computation of answer?
  41. WMDhamnekar

    MHB Evaluate the surface integral $\iint\limits_{\sum}f\cdot d\sigma$

    Evaluate the surface integral $\iint\limits_{\sum} f \cdot d\sigma $ where $ f(x,y,z) = x^2\hat{i} + xy\hat{j} + z\hat{k}$ and $\sum$ is the part of the plane 6x +3y +2z =6 with x ≥ 0, y ≥ 0, z ≥ 0 , with the outward unit normal n pointing in the positive z direction. My attempt to answer...
  42. R

    I Inequality with integral and max of derivative

    Hi. I was reading Lighthill, Introduction to Fourier Analysis and Generalised Functions and in page 17 there is an example/proof where I can't make sense of the following step: $$ \left| \int_{-\infty}^{+\infty} f_n(x)(g(x)-g(0)) \, \mathrm{d}x \right| \le \max{ \left| g'(x) \right| }...
  43. WMDhamnekar

    I What is the equation for line integrals involving the gradient of a function?

    I don't have any idea to answer this question. So, any math help will be accepted. I know ##\nabla fg = f\nabla g + g\nabla f \rightarrow (1) ## But I don't understand to how to use (1) here?
  44. WMDhamnekar

    A Solve Line Integral Question | Get Math Help from Physics Forums

    I don't have any idea about how to use the hint given by the author. Author has given the answer to this question i-e F(x,y) = axy + bx + cy +d. I don't understand how did the author compute this answer. Would any member of Physics Forums enlighten me in this regard? Any math help will be...
  45. WMDhamnekar

    MHB How to prove this corollary in Line Integral using Riemann integral

    . Let C be a smooth curve with arc length L, and suppose that f(x, y) = P(x, y)i +Q(x, y)j is a vector field such that $|| f|(x,y) || \leq M $ for all (x,y) on C. Show that $\left\vert\displaystyle\int_C f \cdot dr \right\vert \leq ML $ Hint: Recall that $\left\vert\displaystyle\int_a^b g(x)...
  46. J

    I The asymptotic behaviour of Elliptic integral near k=1

    I'm looking at a proof of the asymptotic expression for the Elliptic function of the first kind https://math.stackexchange.com/questions/4064023/on-the-asymptotic-behavior-of-elliptic-integral-near-k-1 and I'm having trouble understanding this step in the proof: $$ \begin{align*} \frac{1}{2}...
  47. chwala

    Find the indefinite integral of the given problem

    Now the steps to solution are clear to me...My interest is on the constant that was factored out i.e ##\frac{2}{\sqrt 3}##... the steps that were followed are; They multiplied each term by ##\dfrac{2}{\sqrt 3}## to realize, ##\dfrac{2}{\sqrt 3}\int \dfrac{dx}{\left[\dfrac{2}{\sqrt...
  48. WMDhamnekar

    Evaluation of integral having trigonometric functions

    R is the triangle which area is enclosed by the line x=2, y=0 and y=x. Let us try the substitution ##u = \frac{x+y}{2}, v=\frac{x-y}{2}, \rightarrow x=2u-y , y= x-2v \rightarrow x= 2u-x + 2v \therefore x= u +v## ## y=x-2v \rightarrow y=2u-y-2v, \therefore y=u- v## The sketch of triangle is as...
  49. A

    Is the Result of the Path Integral Positive Due to Negative dx?

    In the book it is mentioned that, in path c, the line integral would be: $$\int \vec{F}\cdot \vec{dr} = A \int_{1}^{0}xy dx = A\int_1^0 x dx = -\dfrac{A}{2}$$. but I think that dx is negative in that case, the result would be positive, right?
Back
Top