System integration is defined in engineering as the process of bringing together the component sub-systems into one system (an aggregation of subsystems cooperating so that the system is able to deliver the overarching functionality) and ensuring that the subsystems function together as a system, and in information technology as the process of linking together different computing systems and software applications physically or functionally, to act as a coordinated whole.
The system integrator integrates discrete systems utilizing a variety of techniques such as computer networking, enterprise application integration, business process management or manual programming.System integration involves integrating existing, often disparate systems in such a way "that focuses on increasing value to the customer" (e.g., improved product quality and performance) while at the same time providing value to the company (e.g., reducing operational costs and improving response time). In the modern world connected by Internet, the role of system integration engineers is important: more and more systems are designed to connect, both within the system under construction and to systems that are already deployed.
Integration in the order of dy then dx:
$$\int_{-1}^{1} \int_{0}^{1-x^2} x^2 \sqrt{1-y} ~dy~dx$$
$$=\int_{-1}^{1} -x^2 \left[\frac{2}{3} (1-y)^{\frac{3}{2}}\right]_{0}^{1-x^2}dx$$
$$=\int_{-1}^{1}\left(-\frac{2}{3}x^5 + \frac{2}{3} x^2\right)dx$$
$$=\left. -\frac{1}{9} x^6 + \frac{2}{9}...
Hi
i have problems, to solve task a)
Since I have to calculate the trace of the matrix ##Q##, I started as follows:
$$\text{trace} (Q)=\sum\limits_{i=1}^{3}\int_{}^{}d^3x'(3x_i^{'2}-r^{'2}) \rho(x')$$
I then calculated further until I got the following form:
$$\text{trace}...
I have an issue with (b). What I did was simply integrate ##dS##. It's a perfect gas, so, $$\left(\frac{\partial E}{\partial T}\right)_V=NC_V$$ and $$\left(\frac{\partial E}{\partial V}\right)_T=0$$ Next I used the relation that ##PV=NkT## to get ##\frac{P}{T}=\frac{Nk}{T}##, and after...
This really cracked me up! Unless there is something i am not seeing!
part (a) is straightforward, using quotient rule:
##\dfrac{dy}{dx} = \dfrac{x⋅\dfrac{1}{x}- \ln x}{x^2}=\dfrac{1-\ln x}{x^2}##
From here i was able to see that,
##\int \dfrac{\ln x}{x^2} dx= \int \dfrac{1}{x^2}- \dfrac{\ln...
Can someone please give as simple an example as possible to show what U substitution is about? I know basic integration rules but don't understand the point of u-substitution. I've read that it's used to "undo the chain rule", but I don't see how, and don't see how we can spot when we'd need to...
I'm hoping there's a reasonable answer to this. To summarize, data I acquired when imaging a particular target shows that I can retain 75% of my images for stacking at 10s exposure times, but only 50% of the images taken with 15s exposures. The difference is entirely due to tracking error and...
In, *An Introduction to Thermal Physics, page 235*, Schroder wants to evaluate the partition function
$$Z_{tot}=\sum_0^\infty (2j+1)e^{-j(j+1)\epsilon/kT}$$
in the limit that $kT\gg\epsilon$, thus he writes
$$Z_{tot}\approx\int_0^\infty (2j+1)e^{-j(j+1)\epsilon/kT}\,dj$$
But how is this...
I was recently very surprised when I had a looked up relativistic kinetic energy.
All sources gave the kinetic energy as the difference between total energy and rest energy, in some or other variant of the formula ##E_k=(\gamma−1)mc^2##.
I didn't really understand at first. It seemed overly...
Hello everyone,
A few days ago I stumbled across the formula for the energy of a moving breather for the Sine-Gordon equation $$\Box^2 \phi = -Sin(\phi) $$ The energy in general is given by (c=1) $$ E = \int_{-\infty}^{\infty} \frac {1} {2} ((\frac {\partial \phi} {\partial x})^2+ (\frac...
Integral 7.2 is ok. I must employ the integration technique used in 7.2 to prove that integral equation 7.1 equals zero. For n<0 we have : $$\sum_{n=- \infty}^{-2} a_n \oint (z-z_0)^ndz$$For n>0 we have : $$\sum_{n=0}^{\infty} a_n \oint (z-z_0)^ndz$$
According to Cauchy's Integral Theorem...
I get that the bottom answer isn't a constant - but does this physically represent anything? When I set the two answers equal to each other, I get x = +- 1/sqrt(2) and I am wondering if this represents anything significant.
I don't think (mathematically) there is anything wrong with the bottom...
Ok, so doing this one direction, with the range of x (0 to 2), I get the top minus the bottom equation of:
## y = 8 - x^3 ##
Then, since it's squares, this would make it ##y^2##. So, integrating gives:
## \int_{0}^{2} (8-x^3)^2 = 82.3 ##
That seems to be correct. However, I want to make...
So the solution is obviously given here, I'm just trying to understand it. I thought that integrating f(x) from -5 to 5 would give the area under the curve (including the areas below the "pond" at the edges of the image but above y=0. I don't really understand why we are subtracting the integral...
I am studying particle pair production using Parker and Toms book: Quantum Field Theory in Curved Spacetime. On page 48 they talk about converting the sum over momentum (k) into an integral. You assume boundary conditions so that k = 2*Pi*n/L, where n is an integer and L is the coordinate...
Could someone guide me on what change of variable was used to obtain equation 9.138 from equation 9.137?
Book : Classical Dynamics of Particles and Systems 5th Edition by Stephen T. Thornton (Author), Jerry B. Marion (Author)
They told us to check equation 8.38 and in that page they had...
Just went through this...steps pretty clear. I refreshed on Riemann integrals { sum of rectangles approximate area under curves}. My question is on the highlighted part in Red. The approximation of area under curve may be smaller or larger than the actual value. Thus the inequality may be ##<##...
I am interested specifically in solving this problem by factoring the quadratic term into complex linear factors.
$$s^2+4=0$$
$$\implies s=\pm 2i$$
$$\frac{5s+6}{(s-2i)(s+2i)(s-2)}=\frac{A}{s-2i}+\frac{B}{s+2i}+\frac{C}{s-2}$$
We can solve for ##C## using the cover-up method with ##s=2## to...
$$h(t)=f(t)*g(t)=\int_0^t f(\tau)g(t-\tau)d\tau=\int_0^t g(\tau)f(t-\tau)d\tau\tag{1}$$
The Laplace transform is
$$H(s)=\int_0^\infty h(t)e^{-st}dt=\int_0^\infty\left ( \int_0^t g(\tau)f(t-\tau)d\tau\right )e^{-st}dt\tag{2}$$
The Laplace transforms of $f$ and $g$ are
$$F(s)=\int_0^\infty...
Hello everyone,
If I have an integral ##\int_0^r \sqrt{(r^2 - x^2)}dx## and I'm integrating across the first quadrant to get the area of the first quater of a circle.
And I change variables with ##x = r\cos{\theta}## and ##dx = -{r}\sin{\theta}{d\theta}##
And I form a new integral that's...
It is clear that a server and a client are programs communicative iwth each other using one or more protocols (HTTP, TCP, etc.)
I conceptually understand what an API is: it is like an intermediary between two programs that makes integration easy. For example, we build app A and want to connect...
I am calculating the temperature distribution and utilizing the obtained results to calculate the current distribution. In order to do this , I employ a table in which I stock all the current distribution for each value of radius . Subsequently, I aim to identify the radius corresponding to a...
I proceeded as follows
$$\int\frac{2(\sqrt3-1)(cosx-sinx)}{2(\sqrt3+2sin2x)}dx$$
$$\int\frac{(cos(\pi/6)-sin(\pi/6))(cosx-sinx)}{(sin(\pi/3)+sin2x)}dx$$
$$\frac{1}{2}\int\frac{cos(\pi/6-x)-sin(\pi/6+x)}{sin(\pi/6+x)cos(\pi/6-x)}dx$$
$$\frac{1}{2}\int cosec(\pi/6+x)-sec(\pi/6-x)dx$$
Which leads...
Some sources state a similar format of the following
$$\int_a^{a+da}f(x)dx=f(a)da$$
Which had me thinking whether the following integration can exist
$$\int_a^{a+dx}f(x)dx=f(a)dx$$
I have difficulty grasping some aspects about these integrations
1. Regarding the 1st integration, shouldn't ##a##...
I tried to prove this but I fall into a loop when I try to apply integration by factors, that is I prove that the integral is equal to itself.
Any helpfull tips?
Idea:
Given a system of two coupled oscillators in which 2 masses are connected to a spring in the middle. Each of the two masses is coupled to another spring on the left and right, which have fixed ends but are not connected to each other. So we have 3 springs, two masses and the springs also...
In the book, I see the following:
##\int_{x_1}^{x_1 + \epsilon X_1} F(x, \hat y , \hat y') dx = \epsilon X_1 F(x, y, y')\Bigr|_{x_1} + O(\epsilon^2)##.
My goal is to show why they are equal. Note that ##\hat y(x) = y(x) + \epsilon \eta(x)## and ##\hat y'(x) = y'(x) + \epsilon \eta'(x)## and...
Picture of question:
Part (a) : ##\nabla \times \vec F = 0## so a Potensial exists. I don't have problem with this part.
Part (b) : what I've done :
First experssion is 0 because ##\theta = \dfrac {\pi} {2}##. I don't know how to integrate over ##\theta ## when it is a constant.
Hi.
What exactly is happening mathematically when you integrate ##\frac{1}{x}##
$$\int_a ^b \frac{1}{x} dx=\ln{b}-\ln{a}=\ln{\frac{b}{a}}$$
if there's units? Sure, they cancel if you write the result as ##\ln{\frac{b}{a}}##, but the intermediate step is not well-defined, so why should log rules...
My attempt:
(a)
I don't think I completely understand the question. By "evaluate ##\lim_{n\to \infty f_n (x)}##", does the question ask in numerical value or in terms of ##x##?
As ##x## approaches 1 or -1, the value of ##f_n (x)## approaches zero. As ##x## approaches zero, the value of ##f_n...
using the equation mentioned under Relevant Equations I can get, $$\mathbb{P}(2X > Y |1 < 4Z < 3) = \frac{\mathbb{P}(2X>Y, 1<4z<3)}{\mathbb{P}(1<4z<3)}$$ I can find the denominator by finding the marginal probability distribution, ##f_{Z}(z)## and then integrating that with bounds 0 to 1. But I...
The characteristic equation has a zero discriminant and the sole root of ##-1##.
The general solution to the associated homogeneous equation is thus
$$y_h(x)=e^{-x}(c_1+c_2x)\tag{1}$$
Now we only need to find one particular solution of the non-homogeneous equation.
The righthand side of the...
Was solving a problem in mathematics and came across the following integration. Unable to move further. Can somebody provide answer for the following ( a and b are constants ).
I am reading the Horatiu Nastase's Introduction to quantum field theory (https://professores.ift.unesp.br/ricardo.matheus/files/courses/2014tqc1/QFT1notes.pdf ) ( Attached file ) or Peskin, Schroeder's quantum field theory book, p.105, (4.77).
Through p.176 ~ p. 177 in the Nastase's Note, he...
I am trying to do the double integral.
And I remembered there's this formula that says if the integrand can be split into products of F(x) and G(y) then we can do each one separately, then take the product of each result. Taken from Stewart's Calculus 9E.
So I tried to do the integral two...
I'd have no problem with this sort of problem if the force were a function of position. But here, I'm not sure where to go. Perhaps I'd start with an expression for the work done over an arbitrary distance if the force is given by ##g(v)##:$$W = \int_a^b g(v) \, dx$$
Not sure what to do next...
I have managed to get the answer given by the textbook I'm referencing: 3π (∛4) (1 + 3∛3)
However, this took multiple attempts, as I was initially trying to integrate within domain x = 0 - 2. This is the area for the bit that's above the x-axis (y=0 as specified). But the above answer is...
My first point of reference is:
https://math.stackexchange.com/questions/154968/is-there-really-no-way-to-integrate-e-x2
I have really taken time to understand how they arrived at ##dx dy=dA=r dθ dr## wow! I had earlier on gone round circles! ...i now get it that one is supposed to use partial...
My take:
$$\int_{x^2}^{2x} \sin t \, dt$$
using the fundamental theorem of calculus we shall have,
$$\int_{x^2}^{2x} \sin t \, dt=-2x \sin x^2 +2 \sin 2x$$
I also wanted to check my answer, i did this by,
$$\int [-2x \sin x^2 +2 \sin 2x] dx$$
for the integration of the first part i.e...
Hi
I have a question about the integration formula of cosecant which leaves me puzzled.
I usually find it written as " = ln |csc x - cot x| + C" in most manuals, but sometimes it is written as "= - ln |csc x + cot x| + C" or "= - ln (csc x + cot x) + C".
Why is that? Can they all be...
Hi,
With respect to the techniques mentioned in point 2 and 3:
Can someone explain or even better, post a link for an explanation or a videos showing the use of these two techniques.
Below excerpt shows problems 4 and 5 referenced in the above 2 points: