This confusion has lingered in the back of my mind for years now, would be good for me to finally get a grasp on this.
Say I have an object currently at rest, and I use energy X to accelerate it to speed v. According to the standard formula, it now has a kinetic energy 1/2mv^2.
Now I use the...
This problem got me kinda confused since I cannot really understand the question... who tells me how the energy dissipated in this case? Has it all transformed into heat to cause the coalesce of the two particles, or ar the two particles now merged together still traveling with a certain amount...
Hello, I am learning how to use calculus to derive the formula for kinetic energy
now, I understandthe majority of the steps in how to do this, however, there is one step where I get totally lost, I will post a picture of the steps and I will circle the part where I get lost. If you see the...
Because, ##F=ma=kv##, therefore, ##a=kv/m##. Clearly, the net acceleration ##A=-(g+a)##.
Also, ##A=dv/dt=-(g+ \frac {kv} m )##, so cross multiplying and integrating LHS with respect to ##v## and RHS with respect to ##t## gives me:
$$ v= e^{ \frac {-tk} m } * (u + \frac {gm} k) - \frac {gm} k $$...
I have a problem regarding Kinetic Energy which as we know is 1/2 m v squared.
Say I have a 1kg mass moving at 10 meters/second. I have a 1 Newton rocket which I attach to the back and it burns for 1 second accelerating the mass by 1 m/sec/sec to 11 m/sec. The KE originally was 50 joules and it...
I first tried to get the solution by conserving the rotational kinetic energy and got ##\omega'=\frac2{\sqrt5} \omega##.
But, it was not the correct answer. Next I tried by conserving the angular momentum and got ##\omega'=\frac 45 \omega##, which is the correct answer.
Why is the rotational...
If we have a photon being converted to a positron-electron pair, but we lack enough energy for this to happen (hv<2Me*c^2) but the difference is smaller than the uncertainty amount, such that tunneling may be possible, would the resultant pair have net negative energy? Would tunneling even be...
Hi all,
I've read so many times that "temperature is a measure of the average kinetic energy of the molecules in a substance," or sometimes "particles" to encompass atoms and ions too. But how big can "molecules/particles" be before their kinetic energy is no longer relevant to temperature?
If...
I am not sure I understand the question. I imagine there is a horizontal table and all the diagrams are the top-view of the table.
The question states that "A particle moves from P1 to P2 without acceleration along five different paths". In the first picture, I think the path is in the shape of...
If this question asked for internal energy, then it is a straightforward thing, just use the formula U = (3/2) nRT = (3/2) PV. But the question specifically asked for average translational kinetic energy which I'm stuck with the value of T to plug in into the formula as the question only give us...
I'm trying to make up an example for my students to illustrate that in nuclear decay, mass-energy and momentum are both conserved.
I found this problem: https://physics.stackexchange.com/questions/304277/calculate-velocity-of-radon-220-nuclear-after-decay
I am trying to modify it so that they...
How did you find PF?: We can derive the equation 1/2mV2. But what is the fundamental reason behind mV2(total energy) is divided by half?
I find only derivative solutions to this question. But still unsatisfied.
(Note: I had this question posted at the intermediate level of difficulty for 11 days, but got only one, cryptic (to me) response that was rather quickly removed. So, I figured perhaps it's actually an advanced question, requiring more than a cursory understanding.)
Assuming they've had an...
Well I am pretty sure that the kinetic energy stays the same because in this case the velocity vector and energy make a ninety degree angle so no work is done, but I am lost about angular momentum. It could decrease maybe if the torque is clockwise while the ship is going in a counterclockwise...
So, I know the right solution should be like it has same potential energy initially, in the trial one, since the floor is frictionless, the plane will move too and it shares the potential energy with the block. So in trial 1 the potential energy equals final kinetic energy of the block and...
So far I found the answer for a and b, but when I attempted to do the other ones I was completely lost.
A.) P= MV
M = 25g = .025kg
V = 18
.025 * 18 = .45kg*m/s
B.) KE= 1/2 mv^2
1/2 (.025)(18)^2
4.05 J
Hello! When the kinetic energy of a molecule is written in its CM frame we get the formula attached. The first term is the kinetic energy of the CM frame with respect to the lab frame, the second term is the kinetic energy associated with the distance between the nuclei and the last term is the...
Hello,
When a charged particle is inside a magnetic bottle at the right speed, the particle bounces back and forth and is confined inside the magnetic field.
The magnetic force does not work on the particle hence the particle's kinetic energy remains constant.
That means that the particle may...
Let ##\Theta## be the angle, following the movement of the center of the disk.
In order to find the kinetic energy, we brake the movement of the disk into 2: The translation of the center of mass, and the rotation of the disk around it.
So, the kinetic energy will be given by:
$$T= \frac 1 2...
Hello.
I need some guidance on how to find the fraction of molecules with KE between K1 and K2 from the Maxwell kinetic energy distribution function.
Here's an link to an earlier post where the speed distribution was integrated, how will I proceed with the kinetic energy distribution...
I want to calculate the kinetic energy distribution amongst let's say nitrogen molecules by using M.K.E.D, but not sure where to start.
I posted a picturefrom my physics book where the formula is shown, there was no example in the book.
As for g(K), is K the same as the kinetic energy formula...
I was going over the rolling disk versus rolling hoop problem, in which the hoop has more Kr due to greater I and therefore smaller Kt and v. I know this can be algebraically proved with two unique expressions for V that don't involve omega. The question in class that came up concerns torque. If...
I have some doubts about ballistic pendulums.
First, we say that if a bullet hits the pendulum, the linear momentum is conserved. But when we consider a rod attached to a pivot at one of its ends instead of a pendulum we say that the linear momentum isn't conserved because the rod can't move...
Consider the situation in the attached photo. The kinetic energy in A is 10 J, in B is 30 J. What is the kinetic energy in C?
Using that the mechanical energy is the sum of potential energy ##(E_p=mgh)## and kinetic energy ##(E_k=\dfrac{mv^2}{2})##, we get that the mechanical energies in...
Hi,
When objects fall in a gravitational field, they convert gravitational potential energy into kinetic energy. Because energy is always conserved:
amount of kinetic energy gained = amount of gravitational potential energy lost.
Now the gravitational energy lost should be equal to the amount...
In these lecture notes about statistical mechanics, page ##10##, we can see the graph below.
It represents the distribution (probability density function) of the kinetic energy ##E## (a random variable) of all the gas particles (i.e., ##E=\sum_{i}^{N} E_{i}##, where ##E_{i}## (also a random...
Hello, I just have a quick question on deriving the kinetic energy formula using calculus. I understand most of it, I just have a question about one of the steps. here are the steps.
Begin with the Work-Energy Theorem.The work that is done on an object is related to the change in its kinetic...
Homework Statement:: Consider a platform (mass: M) which horizontal surface AB s smoothly joined to vertical surface CD as shown in the figure below. Initially, the platform is fixed in place on a horizontal floor. A small object (mass: m) is placed on AB and given an initial speed of v in the...
Homework Statement:: Consider an electron trapped in a one-dimensional finite well of width L. What is the minimum possible kinetic energy of the electron?
A) 0
B) Between 0 and h^2/8mL^2
C) ≈h^2/8mL^2, but it is not possible to find the exact value because of the uncertainty principle
D)...
It says that for Ag atoms, from Kinetic Theory, the velocity vx of an atom of mass M is evaluated by setting
(1/2)M(vx)^2 = 2kT
This is my confusion. What I have studied is that it should be equal to (3/2)kT instead of 2kT.
Summary: Finding the KE of a two proton collision that creates Kaons. Given the rest KE of protons and kaons, what is the minimum KE of one proton that can create the two kaons.
In high-energy physics, new particles can be created by collisions of fast-moving projectile particles with...
I got acceleration by dividing force by m then replaced a by dv/dt and then integrated it to get velocity as a fxn of time and hence got kinetic energy but problem is my ans does not match with any option can someone please compare their ans
Firstly I tried defining into an equation to make the whole thing more 'tangible'.
##m_1= Paula's~Weight⋅2 = m_p⋅2##
##m_2= \frac {Dave's~weight}{2} = \frac {m_d}{2}##
Before impact
##E_k1= \frac 1 2 (m_p⋅2)(0^2)##
##E_k1= \frac 1 2 (2m_p)##
##E_k1= m_p ##
After Impact
##E_k2= \frac 1 2...
Hi.
I searched and found no answer to this simple question:
Is the spinning wheel in this videoclip keeping the same rotation (kinetic energy) when flipped upside down and back again?
(if we forget about friction)
Suppose object1 with mass m and velocity v has collided with a block. Also, object2 that has identical shape and dimensions with mass m/2 and velocity 2v has collided to that block. Since the momenta of two objects are identical but the kinetic energy of object2 is twice:
Are the forces between...
Summary: I always confuse Binding Energy with Released Energy in such processes. Which one comes from mass defect?
For example in a Deuterium-Tritium fusion two nuclei with lower binding energy converse to He-4 with much higher binding energy (and a neutron). The released energy is 17.6 MeV...
Summary: Integrating the 1 dimensional MB Distribution in terms of translational kinetic energy up to infinity, does not yield ##\frac{1}{2}k_BT## as it should be.
The format for the 3 dimensional Maxwell-Boltzmann Distribution is ##A\cdot e^{-\frac{E}{k_BT}} \cdot g(E)## in which ##A## can be...
I'm programming a game in which I'd like to simulate the real world physics of an attack using primarily medieval style weapons. Think dwarf fortress, but rather than assigning damage numbers we're calculating force or kinetic energy. Getting that much is easy enough since I can find the mass of...
My attempt at the solution...
I only have problem in solving part a)
1) i calculated the spring force actingbon the table block and it is greater than the frictionnand tension force acting in the opposite direction, so by that the block will move in left.
2) now i found that which forces are...
Usually when setting up an energy equation I use the general form, (Initial KE) + (Initial PE) + (Any other work done to the body) = (Final KE) + (Final PE) ...
For this I said the initial GPE and KE are 0, and the work done by the field is GMm/x (derived by integrating a force of -GMm/r^2 from...
Dear Experts,
I have read from various sources that the temperature of a gas is related to the "average translational kinetic energy" of a molecule of gas. When there are molecules that support motion other than translational ,which may also have rotational and vibrational motion, How does those...
Suppose that we have two balls (1) and (2) with the masses m1 and m2 and velocities v1 and v2, respectively. Furthermore, suppose that their momentums and kinetic energies are not the same so that P1>P2 and K1<K2. Which ball is more dangerous in hitting a person.
I drew a diagram for the a) part
The person is h meters high
So GPE= 100 x 9.8x h
GPE= 980h j
KE = 980h when the person hits the see saw
KE=1/2mv²
980h=0.5 x 5 x v²
Now it v²=u²+2as
For the brick going up to 10m
v = 0
u=?
a=-9.8ms-²
s=10m
u²=2 x 9.8 x 10
u=14m/s
We can assume that u=14m/s is...
$$\sum F_x = T - w_x - f_k = ma_x $$
$$ T = mg\sin(\theta) + mg\cos(\theta)\mu_k + ma_x$$
$$ T = (9.8 \frac{m}{s^2}) \cdot (\sin(41^{\circ}) + \cos(41^{\circ})) + (75kg)\cdot(0.25\frac{m}{s^2}) $$
$$T = 672.91 N $$
Having found the tension force, I can find the work done by the person who's...