Introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in 1788, Lagrangian mechanics is a formulation of classical mechanics and is founded on the stationary action principle.
Lagrangian mechanics defines a mechanical system to be a pair
(
M
,
L
)
{\displaystyle (M,L)}
of a configuration space
M
{\displaystyle M}
and a smooth function
L
=
L
(
q
,
v
,
t
)
{\displaystyle L=L(q,v,t)}
called Lagrangian. By convention,
L
=
T
−
V
,
{\displaystyle L=T-V,}
where
T
{\displaystyle T}
and
V
{\displaystyle V}
are the kinetic and potential energy of the system, respectively. Here
q
∈
M
,
{\displaystyle q\in M,}
and
v
{\displaystyle v}
is the velocity vector at
q
{\displaystyle q}
(
v
{\displaystyle (v}
is tangential to
M
)
.
{\displaystyle M).}
(For those familiar with tangent bundles,
L
:
T
M
×
R
t
→
R
,
{\displaystyle L:TM\times \mathbb {R} _{t}\to \mathbb {R} ,}
and
v
∈
T
q
M
)
.
{\displaystyle v\in T_{q}M).}
Given the time instants
t
1
{\displaystyle t_{1}}
and
t
2
,
{\displaystyle t_{2},}
Lagrangian mechanics postulates that a smooth path
x
0
:
[
t
1
,
t
2
]
→
M
{\displaystyle x_{0}:[t_{1},t_{2}]\to M}
describes the time evolution of the given system if and only if
x
0
{\displaystyle x_{0}}
is a stationary point of the action functional
S
[
x
]
=
def
∫
t
1
t
2
L
(
x
(
t
)
,
x
˙
(
t
)
,
t
)
d
t
.
{\displaystyle {\cal {S}}[x]\,{\stackrel {\text{def}}{=}}\,\int _{t_{1}}^{t_{2}}L(x(t),{\dot {x}}(t),t)\,dt.}
If
M
{\displaystyle M}
is an open subset of
R
n
{\displaystyle \mathbb {R} ^{n}}
and
t
1
,
{\displaystyle t_{1},}
t
2
{\displaystyle t_{2}}
are finite, then the smooth path
x
0
{\displaystyle x_{0}}
is a stationary point of
S
{\displaystyle {\cal {S}}}
if all its directional derivatives at
x
0
{\displaystyle x_{0}}
vanish, i.e., for every smooth
{\displaystyle \delta {\cal {S}}\ {\stackrel {\text{def}}{=}}\ {\frac {d}{d\varepsilon }}{\Biggl |}_{\varepsilon =0}{\cal {S}}\left[x_{0}+\varepsilon \delta \right]=0.}
The function
δ
(
t
)
{\displaystyle \delta (t)}
on the right-hand side is called perturbation or virtual displacement. The directional derivative
δ
S
{\displaystyle \delta {\cal {S}}}
on the left is known as variation in physics and Gateaux derivative in Mathematics.
Lagrangian mechanics has been extended to allow for non-conservative forces.
Hi, reading "Mechanics" book by Landau-Lifshitz, they derive from spatial homogeneity that the Lagrangian ##L## of a free particle cannot explicitly depend on spatial coordinates ##q## in an inertial frame.
However my point is as follows: suppose to consider the Lagrangian ##L= \frac 1 2...
So at first I tried to express the potential energy as a function of x, y and z, but since I'm not quite sure about the geometry of the situation, I decided to separate out the potential energy into three components: ##V_x, V_y, V_z## (I'm pretty sure this is valid because in the partial...
Degree of freedom along a parabola, or any such tame curve, is one from lagrangian mechanics point of view. It makes sense. However how does degree of freedom accompany a space filling curve. Intuitively degree of freedom is not two, since not all motions are possible along the curve. How would...
I took the derviative of the Hamiltonian function with respect to Q and assumed that it was equal to 0 in order to find the Konstant A. I did find the Konstant A as -1/2m^2g but I still cant write the Hamiltonian equation without having the Q as a variable. Can someone please help?
Translation...
I have found the Hamiltonian to be ##H = L - 6 (q_1)^2## using the method below:
1. Find momenta using δL/δ\dot{q_i}
2. Apply Hamiltonian equation: H = sum over i (p_i \dot{q_i}) - L 3(q_1)^2. Simplifying result by combining terms
4. Comparing the given Lagrangian to the resulting Hamiltonian I...
How to handle a variable mass system with Lagrangian mechanics? As far as I understand Newtonian mechanics fails, because the object is not constant anymore, it is updated every moment to a new object with different physical properties. I don't immediately see how Lagrangian mechanics can do better.
I am currently taking a course on introductory Lagrangian and Hamiltonian mechanics in year 2 in the UK.
I find the material easy but do not have access to a resource with a satisfying amount of problems.
Despite being (in)directly told this resource is not useful at my level, I have Landau...
I'm just getting started on Lagrangian mechanics and what I can't understand is, how did Lagrange discover the Lagrangian? Did he just randomly decide to see what would happen if we calculate KE - PE or T - V and then discovered that the quantity is actually mathematically and physically...
Let us consider an action ##S=S(a,b,c)## which is a functional of the fields ##a,\, b,\,## and ##c##. The solution of the field ##c## is given by the expression ##f(a,b)##. On taking into account the relations obtained from the solutions for ##a## and ##b##, we find that ##f(a,b)=0##. If the...
If a Lagrangian has the fields ##a##, ##b## and ##c## whose equations of motion are denoted by ##E_a, E_b## and ##E_c## respectively, then if
\begin{align}
E_a=f_1(a,b,c)\,E_b+f_2(a,b,c)\,E_c
\end{align}
where ##f_1## and ##f_2## are some functions of the fields, if ##E_b## and ##E_c## are...
We know that all actions are invariant under their gauge transformations. Are the equations of motion also invariant under the gauge transformations?
If yes, can you show a mathematical proof (instead of just saying in words)?
I'm having trouble understanding how to find out whether or not a stationary point is a minimum and I'm hoping for some clarification. In my class, we were shown that, using Euler's equation, the straight-line path:
with constants a and b results in a stationary point of the integral:
A...
Let E be a fixed immutable quantity. E can be freely exchanged between T and V, as long as $$T + V = E$$
1. What does the quantity $$\int_x T - V $$ signify? What is the importance of this quantity?
--------------------
Let E now be the budget of a factory. E can either be spent on T or V in...
I had used the same constraint as the solution manual says.
So my two Lagrangian would be
##L_1=\frac{1}{2}m_A\dot{x_A}^2+\frac{1}{2}m_B\dot{x_B}^2+\frac{1}{2}m_C\dot{x_C}^2+m_Cgx_C+T(x_A+x_B+2x_C-c)##
whereas c is just a constant.
Of course, I have to write my Lagrangian using constraints...
I am having trouble to find the moment of inertia of the second rod!
Is it related to the first rod??
At the beginning I thought It's not!
But when took those as constant,the equation had become way much simpler and there is nothing about chaos!
My approach is given below
I want to share my recent results on the foundation of classical mechanics. Te abstract readWe construct an operational formulation of classical mechanics without presupposing previous results from analytical mechanics. In doing so, several concepts from analytical mechanics will be rediscovered...
This is from Taylor's classical mechanichs, 11.4, example of finding the Lagrangian of the double pendulum
Relevant figure attached below
Angle between the two velocities of second mass is
$$\phi_2-\phi_1$$
Potential energy
$$U_1=m_1gL_1$$
$$U_2=m_2g[L_1\cos(1-\phi_1)+L_2(1-\phi_2)]$$...
In Lagrangian mechanics we learn about generalized forces. However, I haven't seen these explicitly mentioned in books on QFT. Can the Lagrangians of QED or QCD be expressed in terms of generalized forces or is there some connection there, in particular to the Nielsen form.
Principle of stationary action allows us to find equations of motion if we plug appropriate lagrangian into Euler - Lagrange equation. In classical mechanics, this is the difference in kinetic and potential energy of the system.
However, how did Lagrange came to the idea that matter behaves...
Hello all, so I’ve been reading Jennifer Coopersmith’s The Lazy Universe: An Introduction to the Principle of Least Action, and on page 72 it says:
If I understand it right, she’s saying that in our Euler-Lagrange equation ## \frac {\partial L} {\partial q} - \frac {d} {dt} \frac {\partial L}...
Lagrangian mechanics is built upon calculus of variation. This means that we want to find out function which is a stationary point of particular function (functional) which in Lagrangian mechanics is called the action.
To know what this function is, action needs to be defined first. Action is...
I think I undeerstand Lagrangian mechanics but I have a question that will help to clarify some concepts.
Imagine I throw a pencil. For that I have 5 generalised coordinates (x,y,z and 2 rotational).
When I express Kinetic Energy (T) as:
$$T = 1/2m\dot{x^{2}}+1/2m\dot{y^{2}}+1/2m\dot{z^{2}} +...
I have sometimes seen the claim that one advantage of Lagrangian mechanics is that it works in any frame of reference, instead of like Newtonian mechanics which will hold only in the inertial frame of reference. However isn't this gain only at the sacrifice that the Lagrangian will need to take...
My understanding of the system from the image (which was given in book)
I could see there's 3 tension in 2 body. Even I had seen 2 tension in a body. It was little bit confusing to me. I could find tension in Lagrangian from right side. But left side was confusing to me...
I'm trying to solve the Goldstein classical mechanics exercises 1.7. The problem is to prove:
$$\frac{\partial \dot T}{\partial \dot q} - 2\frac{\partial T}{\partial q} = Q$$
Below is my progress, and I got stuck at one of the step.
Now since we have langrange equation:
$$\frac{d}{dt}...
I read somewhere that Morse originally applied his theory to the calculus of variations. I'm wondering, is this application useful in physics and mechanics, like maybe it sheds light on lagrangian mechanics? Does anyone know?
The given lagrangian doesn't seem to correspond to any of the basic systems (like simple/ coupled harmonic oscillators, etc). So I calculated the momentum ##p## which is the partial derivative of ##L## with respect to generalized velocity ##\dot{q}##. Doing so I obtain
$$p =...
In Classical Mechanics by Kibble and Berkshire, in chapter 12.4 which focuses on symmetries and conservation laws (starting on page 291 here), the authors introduce the concept of a generator function G, where the transformation generated by G is given by (equation 12.29 on page 292 in the text)...
Hello,
It might sound silly, but when I try to calculate the kinetic energy of a rotating rod to form the Langrangian (and in general), why it has both translational and rotational kinetic energy?
Is it because when I consider the moment of Inertia about the centre I need to include the...
I have heard many times that it does not matter where you put the zero to calculate the potential energy and then ##L=T-V##. But mostly what we are doing is taking potential energy negative like in an atom for electron or a mass in gravitational field and then effectively adding it to kinetic...
In Solution https://www.slader.com/textbook/9780201657029-classical-mechanics-3rd-edition/67/derivations-and-exercises/20/
In the question say the wedge can move without friction on a smooth surface.
Why does the potential energy of the wedge appear in Lagrangian?
(You can see the Larangian...
Hello! I have some problem getting the correct answer for (b).
My FBD:
For part (a) my lagrangian is
$$L=T-V\iff L=\frac{1}{2}m(b\dot{\theta})^2+mg(b-b\cos\theta)-\frac{1}{2}k\boldsymbol{x}^2,\ where\ \boldsymbol{x}=\sqrt{(1.25b-b)^2+(b\sin\theta)^2}-(1.25b-0.25b)$$
Hence my equation of...
I am new to Lagrangian mechanics and I have gone through basic examples of solving the Euler Lagrange equation for simple pendulums or projectiles and things like that. But I am unable to understand what we are exactly solving the equation for or what is the significance of the differential...
I am new to Lagrangian mechanics and I am unable to comprehend why the Euler Lagrange equation works, and also what really is the significance of the lagrangian.
I copy again the statement here:
So, I think I solved parts a to c but I don't get part d. I couldn't even start it because I don't understand how to set the problem.
I think it refers to some kind of motion like this one in the picture, so I'll have a maximum and a minimum r, and I can get...
Here is the picture on the system.
I have to find the period (T). The masses, R and dX is given. The systam at first is at rest, then at t = 0 we pull the plank to dX distance from its originial position.
In the thread...
Hi, I am an undergraduate student in the 3rd sem, we have Lagrangian Mechanics in our course but I am unable to follow it properly. Can you please suggest me a book that will introduce me to Lagrangian and Hamiltonian Mechanics and slowly teach me how to do problems. I am beginner, so please...
Summary: Since L = T - V, and T equals the kinetic energy (KE) of a particle whose trajectory is to be calculated, how is KE defined since some of its motion will be due to the expanding universe?
My understanding may well be wrong, but it is the following.
if a particle is stationary at...
On page 224 of the 5th edition of Classical Dynamics of Particles and Systems by Stephen T. Thornton and Jerry B. Marion, the authors introduced the ##δ## notation (in section 6.7). This notation is given by Equations (6.88) which are as follows:
$$\delta J = \frac{\partial J}{\partial...
I like using the Euler–Lagrange equations to solve simple mechanical systems, but I'm not perfectly clear on the theory behind it. Is it derived by assuming that action is minimized/stationary? Or does one define a system's Lagrangian according to what makes the Euler–Lagrange equations...
In his book, Landau mentioned varying the relativistic lagrangian
However, I do not understand how he got from varying the integral of ds to varying only the contravariant components.
Would the general procedure not be varying
$$\delta S = -mc\delta\int_a^b\frac{dx_idx^i}{\sqrt{ds}}$$ and...
Homework Statement
Homework Equations
L = T-V
For constant frequency tangential velocity is (radius)*(w)
The Attempt at a Solution
I need to find r(t) using the Langrangian L = T-V
I just was not sure whether I am on the right track for calculating the total kinetic energy for the above...
In my physics education, I shied away from heavily theoretical stuff like General Relativity. I took the required sequence in Quantum Mechanics but having never used it on the job, much of that knowledge has faded too. I started a course in Quantum Field Theory but dropped it. I had friends...
Hi,
I am reading Landau-Lifshitz course in theoretical physics 1. volume, mechanics. The mechanics is derived using variatonal principle from the start.
At first they start with point particles, that do not interact with each other. Thus the equations of motions must be independent for the...
In Chapter 7: Hamilton's Principle, in the Classical Dynamics of Particles and Systems book by Thornton and Marion, Fifth Edition, page 258-259, we have the following equations:
1. Upon squaring Equation (7.117), why did the authors in the first term of Equation (7.118) are summing over two...
Homework Statement
I'm supposed to find the normal force acting on the box by the slab as a function of time. The problem is I don't know what the constraint is. I can't find the relation between r and theta that adds the two up to zero.
Homework Equations
Lagrangian equation.
The Attempt...
Homework Statement
A yoyo falls straight down unwinding as it goes, assume has inner radius a, outer radius b and Inertia I. What is the generalised coordinates and the lagrangian equation of motion?
Homework Equations
L=T-U where T is kinetic energy and U is potential
The Attempt at a...
In Chapter 8: Central-Force Motion, in the Classical Dynamics of Particles and Systems book by Thornton and Marion, Fifth Edition, page 323, Problem 8-5, we are asked to show that the two particles will collide after a time ##\tau/4√2##.
I don't have any problems with the derivations and with...
Homework Statement
Consider a particle moving over the curve ##z=a-bx^2## under the force of gravity. If the particle starts from rest at point ##(0,0)## (I'm guessing it means point ##(0,a)##), tell if the particle ever separates from the curve; if yes, find the point at which it does...