Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Maglev
Recent contents
View information
Top users
Description
Maglev (from magnetic levitation) is a system of train transportation that uses two sets of magnets: one set to repel and push the train up off the track, and another set to move the elevated train ahead, taking advantage of the lack of friction. Along certain "medium-range" routes (usually 320 to 640 km [200 to 400 mi]), maglev can compete favourably with high-speed rail and airplanes.
With maglev technology, the train travels along a guideway of magnets which control the train's stability and speed. While the propulsion and levitation require no moving parts, the bogies can move in relation to the main body of the vehicle and some technologies require support by retractable wheels at speeds under 150 kph. This compares with electric multiple units that may have several dozen parts per bogie. Maglev trains can therefore in some cases be quieter and smoother than conventional trains and have the potential for much higher speeds.Maglev vehicles have set several speed records, and maglev trains can accelerate and decelerate much faster than conventional trains; the only practical limitation is the safety and comfort of the passengers, although wind resistance at very high speeds can cause running costs that are four to five times that of conventional high-speed rail (such as the Tokaido Shinkansen). The power needed for levitation is typically not a large percentage of the overall energy consumption of a high-speed maglev system. Overcoming drag, which makes all land transport more energy intensive at higher speeds, takes the most energy. Vactrain technology has been proposed as a means to overcome this limitation. Maglev systems have been much more expensive to construct than conventional train systems, although the simpler construction of maglev vehicles makes them cheaper to manufacture and maintain.The Shanghai maglev train, also known as the Shanghai Transrapid, has a top speed of 430 km/h (270 mph). The line is the fastest operational high-speed maglev train, designed to connect Shanghai Pudong International Airport and the outskirts of central Pudong, Shanghai. It covers a distance of 30.5 km (19 mi) in just over 8 minutes. For the first time, the launch generated wide public interest and media attention, propelling the popularity of the mode of transportation. Despite over a century of research and development, maglev transport systems are now operational in just three countries (Japan, South Korea and China). The incremental benefits of maglev technology have often been considered hard to justify against cost and risk, especially where there is an existing or proposed conventional high-speed train line with spare passenger carrying capacity, as in high-speed rail in Europe, the High Speed 2 in the UK and Shinkansen in Japan.
View More On Wikipedia.org
Forums
Back
Top