Magnetic repulsion

Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with inertial confinement fusion. The magnetic approach began in the 1940s and absorbed the majority of subsequent development.
Fusion reactions combine light atomic nuclei such as hydrogen to form heavier ones such as helium, producing energy. In order to overcome the electrostatic repulsion between the nuclei, they must have a temperature of tens of millions of degrees, creating a plasma. In addition, the plasma must be contained at a sufficient density for a sufficient time, as specified by the Lawson criterion (triple product).
Magnetic confinement fusion attempts to use the electrical conductivity of the plasma to contain it through interaction with magnetic fields. The magnetic pressure offsets the plasma pressure. Developing a suitable arrangement of fields that contain the fuel without excessive turbulence or leaking is the primary challenge of this technology.

View More On Wikipedia.org
Back
Top