Mean field theory

In physics and probability theory, mean-field theory (aka MFT or rarely self-consistent field theory) studies the behavior of high-dimensional random (stochastic) models by studying a simpler model that approximates the original by averaging over degrees of freedom (the number of values in the final calculation of a statistic that are free to vary). Such models consider many individual components that interact with each other. In MFT, the effect of all the other individuals on any given individual is approximated by a single averaged effect, thus reducing a many-body problem to a one-body problem.
The main idea of MFT is to replace all interactions to any one body with an average or effective interaction, sometimes called a molecular field. This reduces any many-body problem into an effective one-body problem. The ease of solving MFT problems means that some insight into the behavior of the system can be obtained at a lower computational cost.
MFT has since been applied to a wide range of fields outside of physics, including statistical inference, graphical models, neuroscience, artificial intelligence, epidemic models, queueing theory, computer-network performance and game theory, as in the quantal response equilibrium.

View More On Wikipedia.org
Back
Top