In the situation described in the problem, the mass is moving on a horizontal circular path with constant velocity. Wouldn’t this make L and U both constant? Then the Lagrange equation would give 0 = 0, which isn’t what I’m looking for. Any help would be appreciated.
I tried to solve this problem and this is what I could come through:
When the object is moving, the force acting on object is the frictional force, so, it got to be μmg.
So, F = ma and as F is μmg
μmg = ma
μg = a
So, to find out the magnitude of the initial velocity v given to the smaller...
dv/dt is the acceleration, so I thought I could find the acceleration from F = qE = ma = dp/dt. But this is a relativistic case, so the proper acceleration is a = F/mγ3, where v in the gamma is the v of the electron and F = eE. However, I'm not sure if this is correct, because the constant τ...
Intuitively, I'd say that adding a 4-divergence to the Lagrangian should not affect the eqs of motion since the integral of that 4-divergence (of a vector that vanishes at ∞) can be rewritten as a surface term equal to zero, but...
In some theories, the addition of a term that is equal to zero...
Lorentz Law says that for a charged particle moving with a velocity v in a magnetic field B then the force on it is given by $$ \mathbf{F} = q (\mathbf{v} \times \mathbf{B}) $$
Now, if I say that particle’s velocity and the magnetic field are aligned then according to Lorentz Law there will be...
The problem is based on a projectile-spring launcher. A ball is loaded into a tube that pushes back a spring and is then launched. The ball was launched straight horizontally not at an angle.
I'm trying to find the work done on the ball by the spring.
The info I have:
Displacement of spring =...
NOTE: Sorry for my english. I use Google Translate!
Comparing the performance with a friend of mine who is passionate about physics (and he is studying it by himself) we came to the same conclusion. In other words, we have calculated the time taken by both riders to reach the finish line. From...
Hello, I hope you are all having a great day !
I've got a physics test in a couple of days and I have some questions:1.
In a calculation, if the acceleration is in m/s², I presume the speed also has to be in m/s and not in km/h ?
2.
So with this graph (v with t), I have to find the total...
I tried using the equation E(k)=1/2mv^2 and isolating for v but no mass was given. Then, I tried W=fd but there is no distance given. I don't know how to solve this.
In Introduction to special relativity by Resnick,there is a thought experiment to compare lengths perpendicular to relative motion as given in the below image.
What if we try to perform such an experiment to compare lengths parallel to relative motion?
Suppose there are two horizontal rods...
Homework Statement: finding equation of motion for Born-Infeld lagrangian
Homework Equations: born-infelf lagrangian
i do not know where I'm going wrong.
i'll be really grateful for any advice.
I've been attempting to solve this problem for three days now. I have thrown away my old attempts (like, scrumpled up into the bin), but my old attempts involved:
Trying to set up simultaeneous equations relating the journeys between EH and FG to find the deceleration, but the reason why this...
Halliday's book says the following about a wheel rolling down a ramp:
"Note that the pull by the gravitational force causes the body to come down the ramp, but it is the frictional force that causes the body to rotate and thus roll. If you eliminate the friction (by, say, making the ramp slick...
So far what we know about the circular motion is that an object moving in a circle experiences a force towards the center of the circle and as a result accelerates towards this center.
But we also know that an object always moves in the direction of resultant force - if two tractors moving at...
Imagine a massless (or very light-weight) charge that is glued to a rod undergoing sinusoidal motion along an axis. The acceleration of this charge produces electromagnetic waves, which can be harvested for energy, and this energy can be used to power the continued sinusoidal motion as well as...
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
c=0.65
g=9.81 # gravitational force on earth
angle=50 # angle at which projectile is launched
m=0.1
#returning dx/dt, dy/dt, dv/dt as an array
def model(yaf,t):
x=yaf[0] # x position is first element of yaf...
I'm new to classical mechanics.
I've done enough work with vectors to get the basics.
But, I'm having trouble understanding the notation on this MIT presentation I found on circular motion: http://web.mit.edu/8.01t/www/materials/Presentations/Presentation_W04D1.pdf
On slide 23, for example, I...
Hi!
First of all, mention that this is not a "homework" problem in the sense that no teacher ever gave it to me or that I have the obligation to do it. It is a question that came to mind when repasing the theory done in class and though interesting. I still post it here because I suppose that...
Hello all
I am trying to understanding Newton's 2md Law of Motion which states:-
Force = Mass * Acceleration
If I had a force of 10Newtons pushing an object along the ground (assume no friction) in a perfectly horizontal direction that has a Mass of 10kg then the objects acceleration would be...
I'm stack at the very beginning. If I use Newton's second law to find acceleration and integrate until I find the position, I must face
$$v(t) = \int_0^t g-\frac{\lambda v}{m} dt'=gt-\frac{\lambda }{m} \int_0^t\frac{\partial z}{\partial t}dt$$
But this last term feels pretty weird. I don't...
I have the moment of inertia for the core(initial) and full body(final) but my answer for the moment of inertia for the arms(initial) was incorrect.
Arms(initial) moment of inertia:(1/12)(6)(1.7^2)=1.445 this is incorrect for some reason
Core(initial) moment of inertia: .9558
Full...
A solution of equations of motion for charged particle in a uniform magnetic field are well known (##r = const##, ## \dot{\phi} = const##). But if I tring to solve this equation using only mathematical background (without physical reasoning) I can't do this due to entaglements of variables...
I'm not sure if I'm doing this right as far as coming up with the equation they are asking for. I feel the question is poorly worded and the formatting makes their equation notation difficult to understand. Any insight would be very helpful. This is my work so far:
Homework Statement: Hi, I just got my first year 12 assignment which is a depth study of advanced mechanics. I had one idea of investigating the motion of rockets and satellites. I could even do something with circular motion or projectile motion, taking air resistance into consideration. I...
Hello,
As a personal project,I am currently designing a mechatronic hand, with a number of DOF similar to our hand. I've choose to transmit the axial movement of a finger through a rotary motion, because cable where causing too many backslash an other linear transmission became severely more...
I have the formula for amplitude ##A=\sqrt (x_0^2 + \frac{\dot x_0 ^2}{\omega^2})##.
But ##x_0## and ##\dot x_0## refers to the initial conditions, and the information that I'm given is not related to the initial conditions, or at least I'm not told so.
Summary: Since L = T - V, and T equals the kinetic energy (KE) of a particle whose trajectory is to be calculated, how is KE defined since some of its motion will be due to the expanding universe?
My understanding may well be wrong, but it is the following.
if a particle is stationary at...
$$ H = \frac { V^2 - V_0^2 sin \Theta} {-2g} $$
$$ H = \frac {V_0^2 sin \Theta} {2g} $$
So, I need to calculate ## V_0 ##
I'm thinking about pressure.
$$ P = \rho g \Delta h $$
$$ \Delta h = h - L sin \Theta $$
$$ F_A = P S_A $$
$$ F_A = P S_B $$
Dead End here...
Well, this is a problem which makes you think more about concepts than numbers, so I want to see if I've done it correctly.
1) I draw a simple pendulum in an elevator, where you have weight, tension and a pseudo-force. In this situation the effective gravity may be changing due to different...
Simple as it sounds!
Usually people derive aberration of light using linear motion, not circular motion. When aberration happens in linear motion, one would expect distance between the source and the observer to change. But, in circular motion, the path light takes in the circular motion, in...
If I write Newton's equations, seen inside the room and with non tilted axis we have:
##x) N.sin(\alpha)-Fe.cos(\alpha)=m.a_x##
##y) N.cos(\alpha)+Fe.sin(\alpha)-m.g-f*=m.a_y##
Where ##f*=ma##, ##Fe## is the elastic force.
Then, how can I realize about simple harmonic motion?
I also can think...
I was solving problems about the period of a pendulum inside an elevator. They're all the same. If the elevator accelerates upwards you have that the period is shorter and it's longer if the direction is downwards.
But I tried to solve something more difficult and I thought about a pendulum...
Perhaps I should ask this question in the math section of these forums.
But, I'm stumped and I don't think this equation is solvable?
Find theta given all the other variables:
A) So we are given the radius and the coefficient of static friction as 3.0 m and 0.28 respectively. I know that in the vertical direction the only forces acting are the normal force and the gravitational force. Therefore, the normal force is equal to mg because net force is equal to 0, due to...
Hi,
I was having a discussion with somebody who was trying to convince me of these things which I don’t believe.
However I kept trying to think of the physics laws that make these things impossible.
To my mind came resistance and friction. But I feel there are other science laws that I have...
Hi all !
I wonder if I'm right.
(From : Fundamental University Physics, Volume 1 (Mechanics) - (Marcelo Alonso, Edward J.finn) Addison Wesley 1967)
This is my try:
* I have the Greek version of the book and there is no answer.Thanks.
Part B of the following problem seems to be fairly straightforward, but I can't seem to understand it properly. I might be overthinking the problem entirely.
Would anyone be willing to help?
Hello, I am loking for some simulator of the solar system where the movement of the planets is represented. I´'m interested in seeing the central force and linear velocity vectors.
Here is my attempt at setting up the equation:
I set up the equation to find the acceleration of the box:
F-Ffr= m*a
after finding the acceleration, I can use the acceleration and plug it in the formula v^2=(v0)^2+2*a(x-x0), which will get me the value of (x-x0)The solution sheet says that F...
Why is the gravitational potential energy of the chain's center of mass equal to the total kinetic energy of the disc after it was fully wrapped? My first thought was to write ##E_{0}=(M/2+M)g∗2πR=E_{f}= Ep## (from the chain) ##+Ec## (from the disc). Instead he wrote ## mg \frac{l}{2} ## = ##...
For a standard one-dimensional Brownian motion W(t), calculate:
$$E\bigg[\Big(\frac{1}{T}\int\limits_0^TW_t\, dt\Big)^2\bigg]$$I can't figure out how the middle term simplifies.
$$
\mathsf E\left(\int_0^T W_t\mathrm dt\right)^2 = \mathsf E\left[T^2W_T^2\right] - 2T\mathsf E\left[W_T\int_0^T...