Nullspace

In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map L : V → W between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically:




ker

(
L
)
=

{


v


V

L
(

v

)
=

0


}

.


{\displaystyle \ker(L)=\left\{\mathbf {v} \in V\mid L(\mathbf {v} )=\mathbf {0} \right\}.}

View More On Wikipedia.org
Back
Top