Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Partial fractions
Recent contents
View information
Top users
Description
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.The importance of the partial fraction decomposition lies in the fact that it provides algorithms for various computations with rational functions, including the explicit computation of antiderivatives, Taylor series expansions, inverse Z-transforms, and inverse Laplace transforms. The concept was discovered independently in 1702 by both Johann Bernoulli and Gottfried Leibniz.In symbols, the partial fraction decomposition of a rational fraction of the form
f
(
x
)
g
(
x
)
,
{\displaystyle \textstyle {\frac {f(x)}{g(x)}},}
where f and g are polynomials, is its expression as
f
(
x
)
g
(
x
)
=
p
(
x
)
+
∑
j
f
j
(
x
)
g
j
(
x
)
{\displaystyle {\frac {f(x)}{g(x)}}=p(x)+\sum _{j}{\frac {f_{j}(x)}{g_{j}(x)}}}
where
p(x) is a polynomial, and, for each j,
the denominator gj (x) is a power of an irreducible polynomial (that is not factorable into polynomials of positive degrees), and
the numerator fj (x) is a polynomial of a smaller degree than the degree of this irreducible polynomial.
When explicit computation is involved, a coarser decomposition is often preferred, which consists of replacing "irreducible polynomial" by "square-free polynomial" in the description of the outcome. This allows replacing polynomial factorization by the much easier to compute square-free factorization. This is sufficient for most applications, and avoids introducing irrational coefficients when the coefficients of the input polynomials are integers or rational numbers.
View More On Wikipedia.org
Forums
Back
Top