A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.Large accelerators are used for basic research in particle physics. The largest accelerator currently operating is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV. Other powerful accelerators are, RHIC at Brookhaven National Laboratory in New York and, formerly, the Tevatron at Fermilab, Batavia, Illinois. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncological purposes, radioisotope production for medical diagnostics, ion implanters for manufacture of semiconductors, and accelerator mass spectrometers for measurements of rare isotopes such as radiocarbon. There are currently more than 30,000 accelerators in operation around the world.There are two basic classes of accelerators: electrostatic and electrodynamic (or electromagnetic) accelerators. Electrostatic accelerators use static electric fields to accelerate particles. The most common types are the Cockcroft–Walton generator and the Van de Graaff generator. A small-scale example of this class is the cathode ray tube in an ordinary old television set. The achievable kinetic energy for particles in these devices is determined by the accelerating voltage, which is limited by electrical breakdown. Electrodynamic or electromagnetic accelerators, on the other hand, use changing electromagnetic fields (either magnetic induction or oscillating radio frequency fields) to accelerate particles. Since in these types the particles can pass through the same accelerating field multiple times, the output energy is not limited by the strength of the accelerating field. This class, which was first developed in the 1920s, is the basis for most modern large-scale accelerators.
Rolf Widerøe, Gustav Ising, Leó Szilárd, Max Steenbeck, and Ernest Lawrence are considered pioneers of this field, conceiving and building the first operational linear particle accelerator, the betatron, and the cyclotron.
Because the target of the particle beams of early accelerators was usually the atoms of a piece of matter, with the goal being to create collisions with their nuclei in order to investigate nuclear structure, accelerators were commonly referred to as atom smashers in the 20th century. The term persists despite the fact that many modern accelerators create collisions between two subatomic particles, rather than a particle and an atomic nucleus.
Heres one more question
In a particle accelerator, an alpha particle with a mass of 6.64 x10^-27 kg is moving with a speed of 2.50x10^7 m/s. It is moving perpendicularily through a magnetic field of intensity 0.150 T. Using appropriote equations and method find the radius of curvature of...
How do particle accelerators contribute to physics? I know after you smash particles together, you get a bunch of resultant particles, and then they annihilate. But we've been doing that for a long time; we've observed many collisions, and many particles, so why do we keep smashing particles...
Can anyone give me a link to or information about how to build a PRACTICAL particle accelerator? Like one that would fit inside a basement or garage? Please, no handhelds that can't do much, and no mile-long underground accelerators that require their own nuclear power plant. I am interested...
I have seen a few references to neutral particle accelerators, anybody know how they work? For example, how would it be possible to accelerate a neutron to near-c velocity?
I enjoy the X-Files; big surprise eh?
Sometime the references to scientific subjects just kill me.
I just saw an episode where Moldy and Smelly visit an particle accelerator.
They use billions of megawatts to make Meesons.