Note that the wave equation we want to derive was introduced by Alfven in his 1942 paper (please see bottom link to check it out), but he did not include details on how to derive it. That's what we want to do next.
Alright, writing the above equations we assumed that:
$$\mu = 1 \ \ \ ; \ \ \...
If I have a metric of the form ##g_{\mu \nu} = f_{\mu \nu} + h_{\mu \nu}## where ##f_{\mu \nu}## is the background metric and ##h_{\mu \nu}## the perturbation, how do I raise and lower indices of tensors?
For instance, I was told that ##G_{ \ \nu}^{\mu} = f^{\mu \nu '} G_{\nu ' \nu }##. But...
I suppose my question is, since X commutes for H, does this mean that the selection rules are $$<n',l',m'|X|n,l,m>=0$$ unless $$l'=l\pm 1$$ and $$m'=m\pm 1$$, as specified in Shankar?
Since E_i=0 for the ground state, and $$E_f=\frac{(\hbar)^2l(l+1)}{2I}$$, $$w_{fi}=\frac{E_f-E_i}{\hbar}=\frac{(\hbar)l(l+1)}{2I}$$.
So, $$d_f(\infty)=\frac{i}{\hbar}\int_{-\infty}^{\infty}<f|E_od_z|0>e^{\frac{i\hbar l(l+1)t}{2I}+\frac{t}{\tau}}dt$$
My question is in regards to...
I am assuming this is the interaction picture, so I start with $$|\psi>=c_1(t)|1>+c_2(t)|2>$$. Plugging this into the Schrodinger equation,
I get the equations $$i\hbar c_1(t)=<1|H'|2>c_2(t)$$ and $$i\hbar c_2(t)=<1|H'|2>c_1(t)$$. I am assuming H' (the perturbation) is $$H'= − f(t)[...
An electric field E(t) (such that E(t) → 0 fast enough as t → −∞)
is incident on a charged (q) harmonic oscillator (ω) in the x direction,
which gives rise to an added ”potential energy” V (x, t) = −qxE(t).
This whole problem is one-dimensional.
(a) Using first-order time dependent perturbation...
If I calculate ## <\psi^0|\epsilon|\psi^0>## and ## <\psi^0|-\epsilon|\psi^0>## separately and then add, the correction seems to be 0 since ##\epsilon## is a constant perturbation term.
SO how should I approach this? And how the Δ is relevant in this calculation?
I have to solve the equation above. I haven't heard about an exact method so I tried to apply perturbation theory. I don't know much about it so I would like to ask for some help.
First I put an ##\epsilon## in the coefficient of the non-linear ##\xi^2(t)## term:
##\ddot{\xi}(t)=-b\xi...
I expanded the exponential with the derivative to get:
## Z = \Bigg(1 + \frac{1}{2} \frac{\partial}{\partial x_{i}} A^{-1}_{ij} \frac{\partial}{\partial x_{j}} + \frac{1}{4} \frac{\partial}{\partial x_{i}} A^{-1}_{ij} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{k}} A^{-1}_{kl}...
Hello! In Griffiths chapter on Time independent perturbation theory, he has a problem (9.20) in which he asks us to calculate the first order contribution to the electron Hamiltonian in an atom if one takes into account the magnetic dipole/electric quadrupole excitations, beside the electric...
In this problem I am supposed to treat the shelf as a weak perturbation. However it doesn't give us what the perturbed state H' is. At the step V(x) = Vo, but that is all that is given and isn't needed to determine H'.
This isn't in a weak magnetic field so I wouldn't you use H'=qEx and then...
From the geodesic equation
d2xμ/dΓ2+Γμ00(dt/dΓ)2=0,for non-relativistic case ,where Γ is the proper time and vi<<c implying dxi/dΓ<<dt/dΓ.
Now if we assume that the metric tensor doesn't evolve with time (e,g gij≠f(t) ) then Γμ00=-1/2gμs∂g00/∂xs.
If we here assume that the metric components of...
I have been following [this video lecture][1] on how to find gauge invariance when studying the perturbation of the metric.
Something is unclear when we try to find fake vs. real perturbation of the metric.
We use an arbitrary small vector field to have the effect of a chart transition map or...
Hi,
I am reading the Hajimiri-Lee phase noise model, and got a question on that. If you have an LC tank circuit that is free-running and I inject a current i(t) (dirac current) at instants either t1 or t2 (shown in the figure), depending on when you inject the phase of the output changes (as...
I'd like to know how to solve the dirac equation with some small gauge potential $\epsilon \gamma^\mu{A}_\mu(x)$ by applying perturbation theory. The equations reads as $$(\gamma^\mu\partial_\mu-m+\epsilon\gamma^\mu A_\mu(x))\psi(x) = 0.$$
The solution up to first order is
$$ \psi(x) =...
This isn't explained anywhere so it must be super basic and I'll probably kick myself for not getting it, but on the wiki page for time independent perturbation theory, section 3.1:
https://en.wikipedia.org/wiki/Perturbation_theory_(quantum_mechanics)
It talks about first order corrections and...
Hi all, I have this (nondimensionalised) system of ODEs that I am trying to analyse:
\[
\begin{align}
\frac{dr}{dt}= &\ - \left(\alpha+\frac{\epsilon}{2}\right)r + \left(1-\frac{\epsilon}{2}\right)\alpha p - \alpha^2\beta r p + \frac{\epsilon}{2} \\
\frac{dp}{dt}= &\...
I am trying to calculate the Ricci tensor in terms of small perturbation hμν over arbitrary background metric gμν whit the restriction
\left| \dfrac{h_{\mu\nu}}{g_{\mu\nu}} \right| << 1
Following Michele Maggiore Gravitational Waves vol 1 I correctly expressed the Chirstoffel symbol in terms...
Hi everyone,
I am doing a time dependent perturbation theory, in a case when the electron is prepared in a state of the continuous part of the energy spectrum. Existence of the discrete part and the degeneracy of the continuous part is irrelevant at the moment and will not be considered...
Homework Statement
Real atomic nuclei are not point charges, but can be approximated as a spherical distribution with radius ##R##, giving the potential
$$ \phi(r) = \begin{cases}
\frac{Ze}{R}(\frac{3}{2}-\frac{1}{2}\frac{r^2}{R^2}) &\quad r<R\\
\frac{Ze}{r} &\quad r>R \\...
Hello guys,
I'm wondering if there are some important restrctions on the 'applicability' of first order perturbation theory.
I know there's a way to deduce Schwarzschild's solution to Einstein's field equations that assummes one can decompose the 4D metric ##g_{\mu\nu}## as Minkowski...
Hello! I am reading Griffiths and I reached the Degenerate Time Independent Perturbation Theory. When calculating the first correction to the energy, he talks about "good" states, which are the orthogonal degenerate states to which the system returns, once the perturbation is gone. I understand...
Homework Statement
Could someone please see if my working are correct for this question, I have never actually done a question of this nature before, and after reading up about the derivation on the perturbation I thought I give ago and apply, my final answer dose not seem correct, as I believe...
Homework Statement
The photon is normally assumed to have zero rest mass. If the photon did have a tiny mass, this would alter the potential energy the electron feels in the hydrogen atom (due to the Coulomb interaction with the proton). The potential then becomes yukawa potential...
Homework Statement
[/B]
Calculate the rate of ionization of a hydrogen atom in the 2p state in a monochromatic external electric field, averaged over the component of angular momentum in the direction of the field. Ignore the spin of the particles. In this case we can write...
My current understanding of renormalization is that the LSZ formula requires normalized fields. So when you normalize them you get some extra parameters from the regularization procedure you encounter along the way. It's an upgrade on my previous understanding of it as some artificial way of...
Hello! I have the following problem I'm trying to solve:
Homework Statement
An Hydrogen atom in the state |100> is found between the plates of a capacitor, where the electric field (weak and uniform) is: E(t) = \epsilon e^{-\alpha t / \tau}.
Calculate the parameters of the potential...
General physical perturbations of string is derived by A.Larsen and V.Frolov (arXiv:hep-th/9303001v1 1March 1993).
An arbitrary string configuration is in 4-dimensional gravitational background. Starting point is Polyakov action
$$ S = \int d \tau d\sigma \sqrt {-h} h^{AB} G_{AB}$$.
Here is...
Hi
I was hoping someone could advise me on a textbook/platform where I can learn more about the perturbation theory applied to helium and the perturbation theory time depedant. Thanks
I'd like to numerically calculate the power spectra of the scalar perturbation at the Hubble crossing in warm inflation, my problem is that I don't know how to do it. As I know, the Hubble crossing happens at the onset of warm inflation where the different modes become larger than the Hubble...
I'm fairly new to QFT and I'm currently trying to understand perturbation theory on this context.
As I understand it, when one does a perturbative expansion of the S-matrix and subsequently calculates the transition amplitude between two asymptotic states, each order in the perturbative...
Homework Statement
I have already solved the problem, but I don't really understand why the orbital angular momentum in the z-direction has to be taken to 0 ?
Homework EquationsThe Attempt at a Solution
Suppose the component of orbital angular momentum in the z-direction is...
Homework Statement
The problem consists of 2 parts,the first one(I have done it) is on the following website:
https://www.physicsforums.com/threads/transition-probability-from-two-states.804343/
Q1: I calculated the desired result p(t) = sin^2(Ut/h). However,I don't understand why <1,t | 2 >...
Homework Statement
Suppose there is a deviation from Coulomb's law at very small distances, with the mutual Coulomb potential energy between an electron and a proton being given by:
$$V_{mod}(r)= \begin{cases} - \frac {e^2} {4 \pi \varepsilon_0} \frac {b} {r^2} & \text {for } 0 \lt r \leq b \\...
Homework Statement
I'm trying to evaluate the following integral to calculate a first-order correction:
$$\int_0^\infty R_{nl}(r)^* \delta \hat {\mathbf H} R_{nl}(r) r^2 dr$$
The problem states that ##b## is small compared to the Bohr radius ##a_o##
Homework Equations
I've been given...
In lectures, I learned that in first order perturbation, \hat{H}_0 term cancels with E_0 term because \hat{H}_0 is Hermitian. What property does Hermitian operators hold that cancels with the unperturbed energy?
Homework Statement
At t < 0 we have an unperturbed infinite square well. At 0 < t < T, a small perturbation is added to the potential: V(x) + V'(x), where V'(x) is the perturbation. At t > T, the perturbation is removed. Suppose the system is initially in the tenth excited state if the...
Homework Statement
Find the first-order corrections to energy and the wavefunction, for a 1D harmonic oscillator which is linearly perturbed by ##H'=ax##.
Homework Equations
First-order correction to the energy is given by, ##E^{(1)}=\langle n|H'|n\rangle##, while first-order correction to the...
Note this isn't actually a homework problem, I am working through my textbook making sure I understand the derivation of certain equations and have become stuck on one part of a derivation.
1. Homework Statement
I am working through my text (Quantum Mechanics 2nd Edition by B.H Bransden & C.J...
I have a question about time dependent perturbation.
In time dependent perturbation, unlike time independent perturbation, there is no lamda which is used for comparing order.
So, I`m confused how can I determine order.
Is there any explanation which use lambda or some other method for...
Homework Statement
How to calculate the matrix elements of the quantum harmonic oscillator Hamiltonian with perturbation to potential of -2cos(\pi x)
The attempt at a solution
H=H_o +H' so H=\frac{p^2}{2m}+\frac{1}{2} m \omega x^2-2cos(\pi x)
I know how to find the matrix of the normal...
First of all, thanks for reading.
I'd like to ask if some of you here can suggest a reference text concerning perturbation methods on thin airfoil? I'm using the text of Katz and Plotkin as well as Van Dyke but for now, I find it challenging to follow their discussion. I hope that finding a...
Based on this lecture notes http://www.helsinki.fi/~hkurkisu/CosPer.pdf
For a given coordinate system in the background spacetime, there are many possible coordinate systems in the perturbed spacetime, all close to each other, that we could use. As indicated in figure 2, the coordinate system...
I'm struggling to understand degenerate perturbation theory. It's clear that in this case the 'normal' approximation method fails completely seeing as you get a divide by zero.
I follow the example for a two state system given in e.g D.J Griffiths "Introduction to Quantum Mechanics"
However...
Homework Statement
The ground state energy of the 1D harmonic oscillator with angular frequency ##\omega## is ##E_0 = \frac{\hbar \omega}{2}##. The angular frequency is perturbed by a small amount ##\delta \omega##. Use first order perturbation theory to estimate the ground state energy of the...
I've been Dealing with a problem of perturbation of the movement of an infinite chain of harmonic oscillator and I tried to apply the von Zeippel-Poincare formalism of canonical perturbation theory just to see what I get. This was too naive since I quickly stumbled into the problem of defining...