Pseudo force

A fictitious force (also called a pseudo force, d'Alembert force, or inertial force) is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as an accelerating or rotating reference frame. An example is seen in a passenger vehicle that is accelerating in the forward direction – passengers perceive that they are acted upon by a force in the rearward direction pushing them back into their seats. An example in a rotating reference frame is the force that appears to push objects outwards towards the rim of a centrifuge. These apparent forces are examples of fictitious forces.
The fictitious force F is due to an object's inertia when the reference frame does not move inertially, and thus begins to accelerate relative to the free object. The fictitious force thus does not arise from any physical interaction between two objects, such as electromagnetism or contact forces, but rather from the acceleration a of the non-inertial reference frame itself, which from the viewpoint of the frame now appears to be an acceleration of the object instead, requiring a "force" to make this happen. As stated by Iro:
Such an additional force due to nonuniform relative motion of two reference frames is called a pseudo-force.
Assuming Newton's second law in the form F = ma, fictitious forces are always proportional to the mass m.
The fictitious force on an object arises as an imaginary influence, when the frame of reference used to describe the object's motion is accelerating compared to a non-accelerating frame. The fictitious force "explains," using Newton's mechanics, why an object does not follow Newton's laws and "floats freely" as if weightless. As a frame can accelerate in any arbitrary way, so can fictitious forces be as arbitrary (but only in direct response to the acceleration of the frame). However, four fictitious forces are defined for frames accelerated in commonly occurring ways: one caused by any relative acceleration of the origin in a straight line (rectilinear acceleration); two involving rotation: centrifugal force and Coriolis force; and a fourth, called the Euler force, caused by a variable rate of rotation, should that occur.
Gravitational force would also be a fictitious force based upon a field model in which particles distort spacetime due to their mass, such as general relativity.

View More On Wikipedia.org
Back
Top