Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Second law
Recent contents
View information
Top users
Description
The second law of thermodynamics establishes the concept of entropy as a physical property of a thermodynamic system. Entropy predicts the direction of spontaneous processes, and determines whether they are irreversible or impossible, despite obeying the requirement of conservation of energy, which is established in the first law of thermodynamics. The second law may be formulated by the observation that the entropy of isolated systems left to spontaneous evolution cannot decrease, as they always arrive at a state of thermodynamic equilibrium, where the entropy is highest. If all processes in the system are reversible, the entropy is constant. An increase in entropy accounts for the irreversibility of natural processes, often referred to in the concept of the arrow of time.Historically, the second law was an empirical finding that was accepted as an axiom of thermodynamic theory. Statistical mechanics provides a microscopic explanation of the law in terms of probability distributions of the states of large assemblies of atoms or molecules. The second law has been expressed in many ways. Its first formulation, which preceded the proper definition of entropy and was based on caloric theory, is Carnot's theorem, credited to the French scientist Sadi Carnot, who in 1824 showed that the efficiency of conversion of heat to work in a heat engine has an upper limit. The first rigorous definition of the second law based on the concept of entropy came from German scientist Rudolph Clausius in the 1850s including his statement that heat can never pass from a colder to a warmer body without some other change, connected therewith, occurring at the same time.
The second law of thermodynamics can also be used to define the concept of thermodynamic temperature, but this is usually delegated to the zeroth law of thermodynamics.
View More On Wikipedia.org
Forums
Back
Top