Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Shear modulus
Recent contents
View information
Top users
Description
In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain:
G
=
d
e
f
τ
x
y
γ
x
y
=
F
/
A
Δ
x
/
l
=
F
l
A
Δ
x
{\displaystyle G\ {\stackrel {\mathrm {def} }{=}}\ {\frac {\tau _{xy}}{\gamma _{xy}}}={\frac {F/A}{\Delta x/l}}={\frac {Fl}{A\Delta x}}}
where
τ
x
y
=
F
/
A
{\displaystyle \tau _{xy}=F/A\,}
= shear stress
F
{\displaystyle F}
is the force which acts
A
{\displaystyle A}
is the area on which the force acts
γ
x
y
{\displaystyle \gamma _{xy}}
= shear strain. In engineering
:=
Δ
x
/
l
=
tan
θ
{\displaystyle :=\Delta x/l=\tan \theta }
, elsewhere
:=
θ
{\displaystyle :=\theta }
Δ
x
{\displaystyle \Delta x}
is the transverse displacement
l
{\displaystyle l}
is the initial length of the area.The derived SI unit of shear modulus is the pascal (Pa), although it is usually expressed in gigapascals (GPa) or in thousand pounds per square inch (ksi). Its dimensional form is M1L−1T−2, replacing force by mass times acceleration.
View More On Wikipedia.org
Forums
Back
Top