First, I decided to solve for the coefficient in front of the cosine simple harmonic function for velocity. I know there is max velocity of 30cm/s at time = 0 , so I plug it into velocity function.
xmax * w = A
v(t) = Acos(wt)
0.3 = Acos(w*0)
A = 0.3
Then I have my velocity function...
I've been going to the theme park almost every year-and this year in my Physics class we are learning mechanics, more specifically Simple Harmonic Motion.
My teacher told us that for an object to have 'Simple Harmonic Motion' it must have oscillatory motion (like a pendulum going back and...
Hi, I am unsure how to proceed with this problem. I believe that I can correctly calculate the frequency of the oscillations for a bar that is not suspended from a spring but I do not know how to take the effect of the spring into account. The answer given by my professor is $$...
I started off by finding when Fg=Fx:
(72)(x)=(31)(9.8)
x=4.2193m
After this I'm stuck and have a few things I'm confused about:
When the penguin's jumping, is there elastic energy? (because the rope's getting compressed? Or maybe not). Also, I know you can use energy conservation, but...
Homework Statement
In A spring mass system , the spring stretches 2 cm from its 's frelength when a force of 10 N is applied . This spring is stretched 10 cm from it's free length , when a body of mass m = 2 kg is attached to it and released from rest at time t = 0 . Find the A) force constant...
Homework Statement
Write the equation for a particle in simple harmonic motion with amplitude a and angular frequency w considering all distances from one extreme position and time when it is at other extreme end.
Homework Equations
X = A sin (wt + ∆)
∆ = phase difference
The Attempt at a...
I'm in trouble trying to understand the expression ##t= \frac{1}{\omega} cos^{-1}(x/A)## that comes from ##x = Acos(\omega t)##, in which ##A## is the amplitude, ##t## is time and ##x## is displacement.
When ##x = 0##, ##t = \frac{\pi}{2\omega} ##, shouldn't it be 0 since there was no movement?
Homework Statement
Calculate the harmonic motion equation for the following case
A=0.1m, t=0s x=0.05m, v(t=0)>0 a(t=0)= -0.8m/s^2
Homework Equations
x(t)= +/-Acos/sin ( (2pi/T)/*t)
The Attempt at a Solution
[/B]
A is given to be 0.1 so I simply place it into the equation. Now I have to...
Homework Statement
Does amplitude of an oscillating spring with an attached block depend on the block's mass? Assuming the spring has spring constant 'k' and obeys Hooke's law. How would the amplitude of the oscillating spring system be affected if the mass of the block were...
Homework Statement
Two masses m1 and m2 are joined by a spring of spring constant k. Show that the frequency of vibration of these masses along the line connecting them is
ω = √[ k(m1 + m2) / (m1*m2) ]
(Hint: Center of mass remains at rest.)
Homework Equations
f = w/2π
w = √(k/m)
F = -kx
a = -...
Homework Statement
A vertical block-spring system on Earth has a period of 6.0 s. What is the period of this same system on the moon where the acceleration due to gravity is roughly 1/6 that of earth?
Homework Equations
w = √(k/m)
w = (2Pi)/T
T = 2Pi*√(m/k)[/B]
The Attempt at a Solution
So...
Homework Statement
[see attached photo]
I seek specific help with (a) only. The answers to this question are provided in the back of the textbook, so I know the answers (I hope).
Homework Equations
##x(t)=Acos(\omega t+\phi _{0}),##
##v_{x}(t)=-A\omega sin(\omega t+\phi...
Homework Statement
Hookes Law gives: F = -kx. This is SHM. But I cannot see how to get to the sinusoidal expression from this. (In all the explanations, they cheat, and just introduce de novo Omega or Omega^2.)
But how do you get to m. d2x/dt^2 = -x.(omega) ^2
Homework Equations
F = -kx.
m...
Homework Statement
You need to derive a formula for undamped pendulum simple harmonic motion;
1. Starting from the middle point
2. Starting from the extreme point
Homework Equations
The solutions are;
1. s = s0 sin(2 pi f t)
2. s = s0 cos(2 pi f t)
The Attempt at a Solution
I can derive the...
The only thing I know is that phase constant tells how much a signal is shifted along the x-axis. The answer of the question is both option a and b. I am not getting it!
I'm a teacher at a Senior High School in Indonesia. I have two Senior High School physics books (Indonesian book) written about simple harmonic motion formula:
y = A sin θ = A sin (ωt + θ0) = A sin 2πφ = A sin 2π (t/T + θ0/2π)
phase angle = θ = ωt + θ0
phase of wave = φ = t/T + θ0/2π
But I...
Homework Statement
You are exploring a newly discovered planet. The radius of the planet is 7.20 * 107 m. You suspend a lead weight from the lower end of a light string that is 4.00 m long and has mass 0.0280 kg. You measure that it takes 0.0685 s for a transverse pulse to travel from the...
How would you solve for the Amplitude(A) and Phase Constant(ø) of a spring undergoing simple harmonic motion given the following boundary conditions:
(x1,t1)=(0.01, 0)
(x2,t2)=(0.04, 5)
f=13Hz
x values are given in relation to the equilibrium point.
Equation of Motion for a spring undergoing...
Hello,
I have recently been introduced to the topic of simple harmonic motion for the first time (I'm currently an A-level physics student). I feel that I have understood the fundamental ideas behind SHM very well. However, I have one question which has been bugging me and I can't seem to find a...
Homework Statement
Two identical particles, each having charge +q, are fixed in space and separated by a distance d. A third particle with charge -Q is free to move and lies initially at rest on the perpendicular bisector of the two fixed charges a distance x from the midpoint between the two...
Homework Statement
A pendulum of mass ##m## and length ##L## is connected to a spring as shown in figure. If the bob is displaced slightly from its mean position and released, it performs simple harmonic motion. What is the angular frequency of the bob?
Homework Equations
Angular frequency for...
Homework Statement
x=Acos(wt+phi)
Homework Equations
can somebody explain to me please when phi=0. I saw many different questions with many solutions and I can't understand when we have just x=Acos(wt) and when x=Acos(wt+phi)
The Attempt at a Solution
Homework Statement
Is the time average of the tension in the string of the pendulum larger or smaller than
mg? By how much?
Homework Equations
$$F = -mgsin\theta $$
$$T = mgcos\theta $$
The Attempt at a Solution
I'm mostly confused by what it means by time average. However from my...
Hello,
I have a question regarding Damped Harmonic Motion and I was wondering if anyone out there could help me out? Under normal conditions, gravity will not have an affect on a damped spring oscillator that goes up and down. Gravity will just change the offset, and the normal force equation...
Homework Statement
How to rearrange following equation?
Homework Equations
f = (1/2pi) square root of (k/m)
The Attempt at a Solution
(f^2 x m)/ (1/2pi)^2
Is this how i would do it?
Homework Statement
Calculate the speed of the block in SHM as it moves through equilibrium position.
k= 45.08248265 N/m
m of block = 0.505kg
T = 0.665s
Homework Equations
w= the square root of (k/m) ?
The Attempt at a Solution
w = the square root of (45.08248265/0.505)
= 9.448398958
=...
Homework Statement
How can I calculate the initial phase in a simple harmonic motion if I only have the amplitude, frequency and angular velocity as data?
Homework Equations
The formula of the position, in fact they ask me to do the formula that allows to know the elongation depending on the...
Homework Statement
A point mass m= 20 kg, is suspended by a
massless spring of constant 2000 N/m. The
point mass is released when elongation in
the spring is 15 cm. The equation of
displacement of particle as function of time
is : (Take g = 10 m/s2)
Homework Equations
A is amplitude
w is...
Homework Statement
Homework Equations
T = 2pi * sqrt(m/k)
mv =m2v2 (LM)[/B]The Attempt at a Solution
[/B]
So T2 depends on the mass and not velocity. So i can find T2 = 2pi * sqrt([m/2]/k)
For A2 , i know that the amplitude before any collision is 1/2m1v1^2 = 1/2kA1^2
so solving that, i...
Homework Statement
Answer:
Can someone explain the answer? I don't understand why it's necessary for that the moment when the force exerted on the smaller block is greatest is when it is on the verge of slipping. Could it not already have been slipped off or maybe even 3/4 way slipped off...
Homework Statement
Homework Equations
##\tau = rFsin(\theta)##
##\tau_{net} = I\alpha##
##F = -kx##
##kx = mg##
The Attempt at a Solution
I don't understand how the restoring force from the bending of the ruler behaves (so I have no idea how to apply torque here). I also don't understand how...
Homework Statement
To find the time period of this simple harmonic motion
Homework Equations
F= -kx
The Attempt at a Solution
To check Simple harmonic motion first ,I have to displace the mass by some distance which I take to be x in this case.
Therefore the spring will be displaced by a...
One thing I don't understand is that How Amplitude is conserved on both sides if the mass is subjected to different forces on either side of this shm...
Homework Statement
A simple harmonic oscillator, with oscillations in the x direction, has velocity given by: $$v_{x} = (2.2 \frac {\mathrm{m}} {\mathrm{s}}) \sin [(6.9 \frac {\mathrm{rad}} {\mathrm{s}}) t]$$.
Find the values of ##\omega , A, f , T ,## and ##\phi##
Homework Equations
$$v_{x} =...
I have a spring with mass M attached, and leave it at equilibrium. Then I displace it some more by stretching it down a bit more. Displacement due to the mass= X, displacement due to stretching it even more=Y.
Why isn't the amplitude of oscillation= X+Y, but is only actually only Y? This is...
hi, we are a few non-native English speaker physics teacher and we wrote some questions for an assessment book
but we can't be sure about this two similar question.
a) are they accurate for rules of English, are we use correct terms is there a necessary change?
b) are they accurate for rules of...
Homework Statement
A 1.00kg mass and 2.00kg mass are set gently on a platform mounted on an ideal spring of force constant 40.0 N/m. The 2.00 kg mass is suddenly removed. How high above its starting position does the 1.00 kg mass reach?
Related to it... An 87 g box is attached to a spring with...
I am very confused about angular velocity ω and why its used in simple harmonic motion. ω is described as θ/τ but when it comes to masses on springs, there is no angle - it is zero. Angular velocity comes from circular motion but the motion of SHM is not circular. My confusion is even greater...
Homework Statement
The point of the needle of a sewing machine moves in SHM along the x-axis with a frequency of 2.5 Hz. At t=0 its position and velocity components are +1.1 cm and -15 cm/s, respectively.
(a) Find the acceleration component of the needle at t=0
(b) write an equation giving the...
1. The problem statement, all variables, and given/known data
Describe the energy conversions in a spring undergoing simple harmonic motion as it moves from the point of maximum compression to maximum stretch in a frictionless environment. Focus on points at which there will be maximum speed...
Homework Statement
Homework EquationsThe Attempt at a Solution
I know that when displacement is max, kinetic energy is 0
and when displacement is o, kinetic energy is max
and I know is should always be above the axis because KE can't be negative
But what about the amplitude and frequency...
One of the conditions to distinguish Simple Harmonic Motion from other harmonic motions is by the relation that
a∝x
where x is the displacement from the point that acceleration is directed towards
But what confuses me is the constant of proportionality introduced to this relation: ω2
ω is...
Homework Statement
The single wheel of an aircraft can undergo a max of 7500N at a vertical velocity of 8 m/s on landing. The vertical spring moves in SHM and has a stiffness of 600N/mm. The systems vertical damper has a damping coefficient of 38 x 10^3 Ns.m-1
Homework Equations
F=Kx...
Homework Statement
Consider a Simple Harmonic Motion
(SHM) for which, at time t = 1 s, the displacement is s=1 cm, the velocity is
2 cm s−1, and the acceleration is −3
cm s−2. Find the angular frequency, 4. amplitude, and phase constant for this motion.
Homework Equations
f=1/T...
1.
A mass, M = 1.61 kg, is attached to a wall by a spring with k = 559 N/m. The mass slides on a frictionless floor. The spring and mass are immersed in a fluid with a damping constant of 6.33 kg/s. A horizontal force, F(t) = Fd cos (ωdt), where Fd = 52.5 N, is applied to the mass through a...
Homework Statement
Two particles move parallel to the x-axis about the origin with the same amplitude and frequency. At a certain instant, they are found at a distance A/3 from the origin, on opposite sides of the origin, with their velocities in the same direction. Find the phase difference...
Homework Statement
I do not fully grasp the concept behind all of these sub questions (i)-(iv).
Homework Equations
v=wAcos(wt) (SMH)?
Friction Force = Coefficient of Friction * Normal Force
The Attempt at a Solution
(i) Varying as simple harmonic motion sees varying acceleration as it...