Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue, whereas the latter is complex problem solving (CPS) with multiple interrelated obstacles. Another classification of problem-solving tasks is into well-defined problems with specific obstacles and goals, and ill-defined problems in which the current situation is troublesome but it is not clear what kind of resolution to aim for. Similarly, one may distinguish formal or fact-based problems requiring psychometric intelligence, versus socio-emotional problems which depend on the changeable emotions of individuals or groups, such as tactful behavior, fashion, or gift choices.
Solutions require sufficient resources and knowledge to attain the goal. Professionals such as lawyers, doctors, programmers, and consultants are largely problem solvers for issues that require technical skills and knowledge beyond general competence. Many businesses have found profitable markets by recognizing a problem and creating a solution: the more widespread and inconvenient the problem, the greater the opportunity to develop a scalable solution.
There are many specialized problem-solving techniques and methods in fields such as engineering, business, medicine, mathematics, computer science, philosophy, and social organization. The mental techniques to identify, analyze, and solve problems are studied in psychology and cognitive sciences. Also widely researched are the mental obstacles that prevent people from finding solutions; problem-solving impediments include confirmation bias, mental set, and functional fixedness.
Given the following equation:
R = ((Q-P) / |Q-P|) ⋅ V
where Q, P, and V are 3 dimensional vectors, R is a scalar, "⋅" denotes the dot product, and |Q-P| is the magnitude of Q-P.
Assuming Q, V, and R are known and given 3 independent equations with different values for Q, V, and R that...
Would we also use Newton's method, or are there more powerful methods? Are there general methods for solving equations with fractional exponents?
The solution to this problem is;
https://www.wolframalpha.com/input?i=solve+x%5E%2817%2F6%29+%2B+x%5E%2821%2F25%29+%3D+15
Is there a better way of solving this,
My steps,
##5(x+1)^{1.5}-4x-28=0##
##(x+1)^{1.5}=\dfrac{4x+28}{5}##
##(x+1)^3=(\dfrac{4x+28}{5})^2##
##x^3+3x^2+3x+1=\dfrac{16(x+7)^2}{25}##
##25x^3+75x^2+75x+25=16(x^2+14x+49)##
##25x^3+59x^2-149x-759=0##
Letting
##f(x)=25x^3+59x^2-149x-759=0##
and using...