Square well Definition and 223 Threads

  1. M

    Kinetic energy in a finite square well potential

    Hello, I have a quick question: While working on a problem involving a particle in a harmonic oscillator potential, I had to compute the average kinetic energy at t=0. My question is: would that average kinetic energy be the same or different if the particle was in the same state, but in a...
  2. P

    Eigenvalues for particle in finite square well

    I am a second year physics student and have been set a homework assignment to solve a one dimensional time independant schrodinger equation in a finite square well using microsoft excel. I understand the physics behind the situation but am not exactly sure how to use microsoft excel to solve...
  3. S

    Infinite square well eignefunctions

    Homework Statement The eignefunctions for a infinite square well potential are of the form \psi_n} (x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}. Suppose a particle in this potnetial has an initial normalized wavefunction of the form \Psi(x,0)= A\left(\sin \frac{\pi x}{a}\right)^5 What...
  4. N

    Infinite square well, momentum space

    Problem: Find the momentum-space wave function \Phi_n(p,t) for the nth stationary state of the infinite square well. Equations: \Psi_n(x,t) = \psi_n(x) \phi_n(t) \psi_n(x) = \sqrt{\frac{2}{a}}\sin(\frac{n\pi}{a}x) \phi_n(t) = e^{-iE_n t/\hbar} \Phi_n(p,t) =...
  5. S

    Solving for Wave Function in an Infinite Square Well

    Hi guys, this assignment is driving me nuts! Thank you very much for the help! Homework Statement Consider the infinite square well described by V=0, -a/2<x<a/x, and V=infinity otherwise. At t=0, the system is given by the equation \Psi(x,0) = C_{1} \Psi_{1}(x) + C_{2} \Psi_{2}(x)...
  6. P

    Solving Infinite Square Well Homework Problem

    Homework Statement Consider the infinite square well described by V = 0 if 0<x<a and v = infinity otherwise. At t=0, the particle is definitely in the left half of the well, and described by the wave function, \psi (x,0) = \frac{2}{\sqrt{a}}sin\left \frac{2 \pi x}{a} \right if 0 < x <...
  7. cepheid

    Stuck in an Infinite Square Well

    Homework Statement You don't need it verbatim. I'm just trying to solve for the eigenstates and eigenvalues of the Hamiltonian for a one-dimensional infinite square well, with a particle of mass M inside. I'm embarrassed to say it, but the question is throwing me off because the infinite well...
  8. H

    How Do Boundary Conditions Affect Solutions in a Half-Infinite Square Well?

    Hey, I'm considering a square well which is finite on one side (left) and infinite on the other (right). So the wave function is: Left-most region: Ae^(ikx) + Be^(-ikx) Inside the well: Csin(lx) + D(cos(lx)) Right-most region: 0 where k and l are known. The problem is with...
  9. G

    What Is the Well Depth V0 for Exactly Two States in a Finite Square Well?

    Hey, An electron is in a finite square well of 1 Å so the question is to find the values of the well's depth V0 that have exactly two state ? How to proceed with this - finding the eigenvalues En = \hbar^2\pi^2 / 2ma^2 Thanks in advance
  10. K

    Help with infinite square well

    Question: A particle of mass m moves in 1-D infinite square well. at t=0, its wave function is \Psi\left(x,t=0\right)=A\left(a^{2}-x^{2}\right). Find the probability that the particle is in the energy eigenstate E_{n}. Does the probability change with time? What I have so far: So far I...
  11. S

    Solving for Psi(x,t) in an Infinite Square Well Potential

    Consider a particle of mass m in the normal ground sate of an infinite square well potential of width a/2. Its normalized wave function at time t=0 is given by \Psi(x,0) = \frac{2}{\sqrt{a}} \sin \frac{2 \pi x}{a} for 0 <x <a/2 0 elsewhere At this time the well suddenly changes to an...
  12. S

    What Are the Solutions to the 1D Infinite Square Well from -a/2 to +a/2?

    I think I'm on the right track for this problem, but I'm not entirely sure. Find the solutions to the one-dimensional infinite square well when the potential extends from -a/2 to +a/2 instead of 0 to +a. Is the potential invariant with respect to parity? Are the wave functions? Discuss the...
  13. U

    What is the Probability of Finding a Particle in an Infinite Square Well at x=L?

    A particle is in ground state of an infinite square well. Find the probabilirt of finding the particle in the interval \Delta x = 0.002L at x=L. (since delta x is small, do not integrate) here's what I have: \Psi*\Psi = P(x) = \frac{2}{L} sin^2 \left(\frac{ \pi x}{L} \right) \Delta x P...
  14. cepheid

    Can the Infinite Square Well Strategy Be Applied to Find Expansion Coefficients?

    I need a little help with the strategy on this question. My work is below the problem description. A particle of mass m is in an infinite square well of width a (it goes from x = 0 to x = a). The eigenfunctions of the Hamiltonian are known to be: \psi_{n}(x) = \sqrt{\frac{2}{a}}...
  15. P

    Solving Wavefunction of Particle in Square Well Potential

    Hi, I hope this is the right place to ask this... it's problem I have with a homework question but I think it's just me being stupid. There must be something I'm missing. Also I apologise this isn't typed up in proper maths font or anything like I've seen some people doing on this forum... how...
  16. L

    Is the Normalization Independent of Time in Square Well Superposition?

    This comes from http://ocw.mit.edu/NR/rdonlyres/Physics/8-04Quantum-Physics-ISpring2003/44AEFEB2-BD59-4647-9B54-3F2C57C2B57C/0/ps7.pdf" of the MIT coursework online. This problem seems straightforward to me and I believe I'm making a stupid math mistake of one kind or another, though its...
  17. T

    Infinite square well potential

    In the infinite square well potential, the obtained wavefunction is, \psi = \sqrt\frac{2}{a} sin \frac{n\pi x}{a} and we know that the Hamiltonian commutes with the momentum operator, which implies that the eigenfunctions for the Hamiltonian is exactly the same for the momentum...
  18. G

    Finite Square Well: Constructing Initial Wave Function with E < 0

    I read through the derivation of bound and scattering states for a finite square well. The logic made sense to me, but I am not entirely sure how to accommodate an arbitrary initial wave function (with mean E < 0). Afterall, there are only a finite number of bound states. My guess was that the...
  19. B

    Finite Square Well Analysis: Odd Bound States & Scattering States

    Hi, I have a problem with the finite square well. I have to analyze the odd bound states of the finite square well, V(x)= \begin{cases} -V_0 & \text{for } -a<x<a\\ 0 & \text{otherwise} \end{cases}. Specifically, I have to examine the limiting cases (wide, deep well and narrow...
  20. S

    Eigenenergies of finite square well

    Is there any website where I can find the analytic form of the eigenenergy of a 1-D finite square well potential?
  21. B

    Normalize the even wave functions for the finite square well

    I'm trying to normalize the even wave functions for the finite square well. The wave function is: \psi(x)= \begin{cases} Fe^{\kappa x} & \text{for } x< a\\ D\cos(lx) & \text{for } -a\leq x \leq a\\ Fe^{-\kappa x} & \text{for } x> a \end{cases} How can I determine D and F? When I...
  22. P

    Relative phase in infinite square well

    This is a problem from my introductory quantum mechanics class. It's Griffifth's problem 2.6, if anyone has that book. The problem says to investigate the effect of adding two steady state solutions with a relative phase. Namely: \Psi(x,0) = A [ \psi_1(x) + e^{i \phi} \psi_2 (x) ]...
  23. G

    Infinitely annoying square well

    Edit: I corrected an error in the "normalizing" (forgot to square the functions). But since I wasn't really using it anyway it doesn't seem to matter. This square well has an infinite wall at x=0 and a wall of height U at x=L. For the case E < U, obtain solutions to the Schrodinger...
Back
Top