Su(2)

In mathematics, the special unitary group of degree n, denoted SU(n), is the Lie group of n × n unitary matrices with determinant 1.
The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.
The group operation is matrix multiplication. The special unitary group is a subgroup of the unitary group U(n), consisting of all n×n unitary matrices. As a compact classical group, U(n) is the group that preserves the standard inner product on





C


n




{\displaystyle \mathbb {C} ^{n}}
. It is itself a subgroup of the general linear group,



SU

(
n
)

U

(
n
)

GL

(
n
,

C

)


{\displaystyle \operatorname {SU} (n)\subset \operatorname {U} (n)\subset \operatorname {GL} (n,\mathbb {C} )}
.
The SU(n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.The simplest case, SU(1), is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+I, −I}. SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations.

View More On Wikipedia.org
Back
Top