Symmetric matrix

In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,

Because equal matrices have equal dimensions, only square matrices can be symmetric.
The entries of a symmetric matrix are symmetric with respect to the main diagonal. So if




a

i
j




{\displaystyle a_{ij}}
denotes the entry in the



i


{\displaystyle i}
th row and



j


{\displaystyle j}
th column then

for all indices



i


{\displaystyle i}
and



j
.


{\displaystyle j.}

Every square diagonal matrix is symmetric, since all off-diagonal elements are zero. Similarly in characteristic different from 2, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative.
In linear algebra, a real symmetric matrix represents a self-adjoint operator over a real inner product space. The corresponding object for a complex inner product space is a Hermitian matrix with complex-valued entries, which is equal to its conjugate transpose. Therefore, in linear algebra over the complex numbers, it is often assumed that a symmetric matrix refers to one which has real-valued entries. Symmetric matrices appear naturally in a variety of applications, and typical numerical linear algebra software makes special accommodations for them.

View More On Wikipedia.org
Back
Top