I have another dilemma with terminology that is puzzling and would appreciate some advice.
Consider the following truncated Taylor Series:
$$\begin{equation*}
f(\vec{z}_{k+1}) \approx f(\vec{z}_k)
+ \frac{\partial f(\vec{z}_k)}{\partial x} \Delta x
+ \frac{\partial f(\vec{z}_k)}{\partial...
For context, this is when deriving the Boltzmann distribution by using a canonical ensemble (thermodynamics).
omega is a function to represent number of microstates. According to wikipedia...
is the first order expansion around 0 (Maclaurin series).
My confusion: What are even...
Hi all,
I came across the following stackexchange post and was wondering if anyone could give any elaboration for why the answer claims that evaluating the Taylor Series resulted in ##\mathcal{O}(\epsilon^{3})## errors? I have not encountered such an expansion before.
EDIT: The equation at hand...
In the following diagram (from Taylor's Classical Mechanics), an inertial balance is shown.
Intuitively, I totally understand that unequal masses would cause unequal accelerations and therefore rotational motion of the rod. However, how does one prove this mathematically?
The first thing...
For this problem,
My answer for (a) and (b) are
(a): ##E_2(x) = \sqrt{9} + \frac{1}{2 \sqrt{2}}(x - 9) - \frac{1}{8 \sqrt{9^3}}(x - 9)^2##
(b): ##E_2(8) = 2.8287##
However, for (c) does someone please know whether we really need to use Taylors Theorem? For example, why can’t we just do...
I am trying to grasp how the last equation is derived. I understand everything, but the only thing problematic is why in the end, it's ##+O(\epsilon)## and not ##-O(\epsilon)##. It will be easier to directly attach the image, so please, see image attached.
Necessary condition for a curve to provide a weak extremum.
Let ##x(t)## be the extremum curve.
Let ##x=x(t,u) = x(t) + u\eta(t)## be the curve with variation in the neighbourhood of ##(\varepsilon,\varepsilon')##.
Let $$I(u) = \int^b_aL(t,x(t,u),\dot{x}(t,u))dt = \int^b_aL(t,x(t) +...
Can you please explain this series
f(x+\alpha)=\sum^{\infty}_{n=0}\frac{\alpha^n}{n!}\frac{d^nf}{dx^n}
I am confused. Around which point is this Taylor series?
The Taylor microscale in isotropic turbulence is given by:
$$\lambda = \sqrt{ 15 \frac{\nu \ v'^2}{\epsilon} }$$
where v' is the root mean square of the velocity fluctuations. In general, for velocity fluctuations in three dimensions:
$$v' =...
I've occasionally seen examples where autonomous ODE are solved via a power series.
I'm wondering: can you also find a Taylor series solution for a non-autonomous case, like ##y'(t) = f(t)y(t)##?
First I got ##f(0)=0##,
Then I got ##f'(x)(0)=\frac{\cos x(2+\cosh x)-\sin x\sinh x}{(2+\cosh x)^2}=1/3##
But when I tried to got ##f''(x)## and ##f'''(x)##, I felt that's terrible, If there's some easy way to get the anwser?
Inside the textbook, the prerequisites state first year mechanics and some differential equations, although it continues to say the differential equations can be learned as you’re working your way through the book, as differential equations were basically “invented” to be used for applied...
Hello,
I am reading a course on signal processing involving the Z-transform, and I just read something that leaves me confused.
Let ##F(z)## be the given Z-transform of a numerical function ##f[n]## (discrete amplitudes, discrete variable), which has a positive semi-finite support and finite...
I can’t find the chapter list online, does anyone know what topics are covered in John Taylor’s classical mechanics? Would it be similar to what’s covered in Newtonian mechanics, but obviously more advanced.
Cheers in advance 👍
Hi, PF
For example, ##\sin{x}=O(x)## as ##x\rightarrow{0}## because ##|\sin{x}|\leq{|x|}## near 0. This fits textbook definition; easy, I think.
But, Taylor's Theorem says that if ##f^{(n+1)}(t)## exists on an interval containing ##a## and ##x##, and if ##P_{n}## is the ##n##th-order Taylor...
f(x) = 4 + 5x - 6x^2 + 11x^3 - 19x^4 + x^5
question a almost seems too easy as I end up 'removing' the x^4 and x^5 terms
a.
T_{2} (x) = 4 + 5x - 6x^2
b.
= R_{2} (x) = 11x^3 - 19x^4 + x^5
c.
i don't understand what i need to do here. To find the maximum value of a function, we...
Greetings!
Here is the solution that I understand very well I reach a point I think the Professor has mad a mistake , which I need to confirm
after putting x-1=t
we found:
But in this line I think there is error of factorization because we still need and (-1)^(n+1) over 3^n
Thank you...
Greetings
https://www.physicsforums.com/attachments/295843
I really don´t agree with the solution
https://www.physicsforums.com/attachments/295846
as I calculated fxy I got
fxy=xyexy
f(0,1)=0 so x(y-1) should not appear in the solution
am I wrong?
thank you!
First series
\frac{1}{2}\sum^{\infty}_{n=0}\frac{(-1)^n}{n+1}(\frac{1}{p^2})^{n+1}= \frac{1}{2}(\frac{1}{p^2}-\frac{1}{2p^4}+\frac{1}{3p^6}-\frac{1}{4p^8}+...)
whereas second one is...
Consider two different Taylor expansions.
First, let ##f_1(s)=(1+s)^{1/2}##
$$f_1'(s)=-\frac{1}{2(1+s^{3/2})}$$
Near ##s=0##, we have the first order Taylor expansion
$$f_1(s) \approx 1 - \frac{s}{2}$$
Now consider a different choice for ##f(s)##
$$f_2(s)=(1+s^2)^{1/2}$$...
When I do Taylor expansions, I take the first 3 or 4 derivatives of a function and try to induce a pattern, and then evaluate it at some value a (often 0) to find the coefficients in the polynomial expansion.
This is how my textbook does it, and how several other online sources do it as well...
I'm just trying to understand how this works, because what I've been looking at online seems to indicate that I evaluate at ##\delta =0## for some reason, but that would make the given equation for the Taylor series wrong since every derivative term is multiplied by some power of ##\delta##...
I have found the Taylor series up to 4th derivative:
$$f(x)=\frac{1}{2}-\frac{1}{4}(x-1)+\frac{1}{8}(x-1)^2-\frac{1}{16}(x-1)^3+\frac{1}{32}(x-1)^4$$
Using Taylor Inequality:
##a=1, d=2## and ##f^{4} (x)=\frac{24}{(1+x)^5}##
I need to find M that satisfies ##|f^4 (x)| \leq M##
From ##|x-1|...
We sometimes write that
\sin x=x+O(x^3)
that is correct if
\lim_{x \to 0}\frac{\sin x-x}{x^3}
is bounded. However is it fine that to write
\sin x=x+O(x^2)?
I was recently studying the pressure gradient force, and I found it interesting (though this may be incorrect) that you can use a Taylor expansion to pretend that the value of the internal pressure of the fluid does not matter at all, because the internal pressure forces that are a part of the...
Good day
and here is the solution, I have questions about
I don't understand why when in the taylor expansion of exponential when x goes to infinity x^7 is little o of x ? I could undesrtand if -1<x<1 but not if x tends to infinity?
many thanks in advance!
Hello,
I have a question regarding the Taylor expansion of an unknown function and I would be tanksful to have your comments on that.
Suppose we want to find an analytical estimate for an unknown function. The available information for this function is; its exact value at x0 (f0) and first...
I was trying to find this form of the Taylor series online:
$$\vec f(\vec x+\vec a) = \sum_{n=0}^{\infty}\frac{1}{n!}(\vec a \cdot \nabla)^n\vec f(\vec x)$$
But I can’t find it anywhere. Can someone confirm it’s validity and/or provide any links which mention it? It seems quite powerful to be...
I have the following function
$$f^{(0)}\left(x\right)=f\left(x\right)=e^{x}$$
And want to approximate it using Taylor at the point ##\frac{1}{\sqrt e} ##
I also want to decide (without calculator)whether the error in the approximation is smaller than ##\frac{1}{25} ##
The Taylor polynomial is...
I read Iterative methods for optimization by C. Kelley (PDF) and I'm struggling to understand proof of
Notes on notation: S is a simplex with vertices x_1 to x_{N+1} (order matters), some edges v_j = x_j - x_1 that make matrix V = (v_1, \dots, v_n) and \sigma_+(S) = \max_j \lVert...
Hi,
I was watching a video on the origin of Taylor Series shown at the bottom.
Question 1:
The following screenshot was taken at 2:06.
The following is said between 01:56 - 02:05:
Halley gives these two sets of equations for finding nth roots which we can generalize coming up with one...
I'm currently typing up some notes on topics since I have free time right now, and this question popped into my head.
Given a problem as follows:
Find the first five terms of the Taylor series about some ##x_0## and describe the largest interval containing ##x_0## in which they are analytic...
For the case when ##B=0## I get: $$Z = \sum_{n_i = 0,1} e^{-\beta H(\{n_i\})} = \sum_{n_i = 0,1} e^{-\beta A \sum_i^N n_i} =\prod_i^N \sum_{n_i = 0,1} e^{-\beta A n_i} = [1+e^{-\beta A}]^N$$
For non-zero ##B## to first order the best I can get is:
$$Z = \sum_{n_i = 0,1}...
I was working out a problem requiring a taylor expansion of ## \sqrt {1+x^2} ## (about ##x=0##). I needed to go out to the 5th term in the expansion, which, while not difficult, was long and annoying as the ##x^2## necessitated chain rules and product rules when taking the derivatives and the...
Homework Statement: Use Taylor expansion to show that for ##u \in C^4([0,1]) ## $$ max |\partial^+\partial^-u(x) - u''(x)| = \mathcal{O}(h^2)$$ For ##x \in [0,1]## and where the second order derivative ##u''## can be approximated by the central difference operator defined by...
To find the coefficients of the Taylor polynomial of degree two of the function ##z(x,y)## around the point ##(0,0)##, what would be a handy way of doing that in python? How would one find the derivatives of ##z(x,y)##?
3) Taylor expansion question in the context of Lie algebra elements:
Consider some n-dimensional Lie group whose elements depend on a set of parameters \alpha =(\alpha_1 ... \alpha_n) such that g(0) = e with e as the identity, and that had a d-dimensional representation D(\alpha)=D(g(
\alpha)...
I have taken a look but most books and Online stuff just menctions the First order Taylor for 3 variables or the 2nd order Taylor series for just 2 variables.
Could you please tell me which is the general expression for 2nd order Taylor series in 3 or more variables? Because I have not found...
Since $$\lim_{x \rightarrow 0} \frac {R_{n,0,f}(x)} {x^n}=0,$$ ##P_{n,0,g}(x)## contains only terms of degree ##\geq 1## and ##R_{n,0,g}## approaches ##0## as quickly as ##x^n##, I can most likely prove this using ##\epsilon - \delta## arguments, but that seems overly complicated. I also can't...
I have been playing around with Taylor expansion to see if I can get anything out but nothing is jumping out at me. So any hints, suggestions and preferably explanations would be greatly appreciated as I’ve spent so so long messing around with it and I need to move on...
But as always, thank you
This attractor is unusual because it uses both the tanh() and abs() functions. A picture can be found here (penultimate image). Here is some dependency-free Python (abridged from the GitHub code, but not flattened!) to generate the data to arbitrary order:
#!/usr/bin/env python3
from sys...
I tried diffrentiating upto certain higher orders but didn’t find any way.. is there a trick or a transformation involved to make this task less hectic? Pls help
Hi,
I was trying to solve the following problem myself but couldn't figure out how the given Taylor series for log(x) is found.
Taylor series for a function f(x) is given as follows.
Question 1:
I was trying to find the derivative of log(x).
My calculator gives it as...
Because the Taylor series centered at 0, it is same as Maclaurin series. My attempts:
1st attempt
\begin{align}
\frac{1}{1-x} = \sum_{n=0}^\infty x^n\\
\\
\frac{1}{x} = \frac{1}{1-(1-x)} = \sum_{n=0}^\infty (1-x)^n\\
\\
\frac{1}{x^2} = \sum_{n=0}^\infty (1-x^2)^n\\
\\
\frac{1}{(2-x)^2} =...
The error ##e_{n}(y)## for ##\frac{1}{1-y}## is given by ##\frac{1}{(1-c)^{n+2}}y^{n+1}##. It follows that
##\frac{1}{1+y^2}=t_n(-y^2)+e_n(-y^2)##
where ##t_n(y)## is the Taylor polynomial of ##\frac{1}{1-y}##. Taking the definite integral from 0 to ##x## on both sides yields that...
This is another application of using Taylor recurrences (open access) to solve ODEs to arbitrarily high order (e.g. 10th order in the example invocation). It illustrates use of trigonometric recurrences, rather than the product recurrences in my earlier Lorenz ODE posts.
Enjoy!
#!/usr/bin/env...
Hi, as you know infinite sum of taylor series may not converge to its original function which means when we increase the degree of series then we may diverge more. Also you know taylor series is widely used for an approximation to vicinity of relevant point for any function. Let's think about a...