Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Telescoping series
Recent contents
View information
Top users
Description
In mathematics, a telescoping series is a series whose general term
t
n
{\displaystyle t_{n}}
can be written as
t
n
=
a
n
−
a
n
+
1
{\displaystyle t_{n}=a_{n}-a_{n+1}}
, i.e. the difference of two consecutive terms of a sequence
(
a
n
)
{\displaystyle (a_{n})}
.As a consequence the partial sums only consists of two terms of
(
a
n
)
{\displaystyle (a_{n})}
after cancellation. The cancellation technique, with part of each term cancelling with part of the next term, is known as the method of differences.
For example, the series
∑
n
=
1
∞
1
n
(
n
+
1
)
{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n(n+1)}}}
(the series of reciprocals of pronic numbers) simplifies as
∑
n
=
1
∞
1
n
(
n
+
1
)
=
∑
n
=
1
∞
(
1
n
−
1
n
+
1
)
=
lim
N
→
∞
∑
n
=
1
N
(
1
n
−
1
n
+
1
)
=
lim
N
→
∞
[
(
1
−
1
2
)
+
(
1
2
−
1
3
)
+
⋯
+
(
1
N
−
1
N
+
1
)
]
=
lim
N
→
∞
[
1
+
(
−
1
2
+
1
2
)
+
(
−
1
3
+
1
3
)
+
⋯
+
(
−
1
N
+
1
N
)
−
1
N
+
1
]
=
lim
N
→
∞
[
1
−
1
N
+
1
]
=
1.
{\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n(n+1)}}&{}=\sum _{n=1}^{\infty }\left({\frac {1}{n}}-{\frac {1}{n+1}}\right)\\{}&{}=\lim _{N\to \infty }\sum _{n=1}^{N}\left({\frac {1}{n}}-{\frac {1}{n+1}}\right)\\{}&{}=\lim _{N\to \infty }\left\lbrack {\left(1-{\frac {1}{2}}\right)+\left({\frac {1}{2}}-{\frac {1}{3}}\right)+\cdots +\left({\frac {1}{N}}-{\frac {1}{N+1}}\right)}\right\rbrack \\{}&{}=\lim _{N\to \infty }\left\lbrack {1+\left(-{\frac {1}{2}}+{\frac {1}{2}}\right)+\left(-{\frac {1}{3}}+{\frac {1}{3}}\right)+\cdots +\left(-{\frac {1}{N}}+{\frac {1}{N}}\right)-{\frac {1}{N+1}}}\right\rbrack \\{}&{}=\lim _{N\to \infty }\left\lbrack {1-{\frac {1}{N+1}}}\right\rbrack =1.\end{aligned}}}
View More On Wikipedia.org
Forums
Back
Top