Tensor product Definition and 141 Threads

  1. N

    Relating Two Notions of Tensor Product

    When I was first introduced to the tensor product, I was actually introduced to a special case: the tensor product of vector spaces over \mathbb{C}, which was explained to be as the space of multilinear maps on the cross product of the dual spaces, for example. At the time I wasn't aware this...
  2. D

    How does one calculate the Tensor product of two matricies?

    Just as a concrete example, say A and A' are two 2x2 matricies from R^2 to R^2, A = \left [ \begin{array}{cc} a \,\, b \\ c \,\, d \end{array} \right ] A' = \left [ \begin{array}{cc} x \,\, y \\ z \,\, w \end{array} \right ] What would A \otimes_\mathbb{R} A' look like (say wrt the standard...
  3. I

    What Can be Said About the Kernel of a Tensor Product of Linear Maps?

    Suppose f_1 is a linear map between vector spaces V_1 and U_1, and f_2 is a linear map between vector spaces V_2 and U_2 (all vector spaces over F). Then f_1 \otimes f_2 is a linear transformation from V_1 \otimes_F V_2 to U_1 \otimes_F U_2. Is there any "nice" way that we can write the kernel...
  4. I

    Tensor product vector spaces over complex and real

    Let U and V be vector spaces over the complex numbers C. Then the tensor product over C, U\otimes_CV is also a complex vector space. Note that U, V, and U\otimes_CV can be regarded as vector spaces over the real numbers R as well. Also note that we can form U\otimes_RV. Question: are U\otimes_CV...
  5. quasar987

    Why are the tensor products over Q and Z_n equal?

    Given R a ring and M,N two R-modules, we may form their tensor product over Z or R. They can be defined as the group presentations < A x B | (a + a',b)=(a,b) + (a',b), (a,b+b')=(a,b) + (a,b') >, < A x B | (a + a',b)=(a,b) + (a',b), (a,b+b')=(a,b) + (a,b'), (ra,b)=(a,rb) > respectively and the...
  6. Rasalhague

    Metric Tensor & Symmetric Tensor Product in GR

    The Wikipedia article Metric tensor (general relativity) has the following equation for the metric tensor in an arbitrary chart, g = g_{\mu\nu} \, \mathrm{d}x^\mu \otimes \mathrm{d}x^\nu It then says, "If we define the symmetric tensor product by juxtaposition, we can write the metric in...
  7. N

    Question re. tensor product of v. spaces

    So I'm reading about tensor products and wanting to make sure I understand the notion completely. I understand that V^* \otimes W is the space of linear functions from V \text{to} W. And since V^{**} \backsimeq V, we have that V \otimes W is the space of linear functions from V^* \text{to}...
  8. J

    QM Tensor Product: Finding Eigenstates of H0

    Hi, I am reading this article for homework about a ring in a megnetic field. It starts off by giving a hamiltonian (an adiabatic part -never mind) H_{0}= \frac{1}{2M} [ \Pi -A]^{2} -\mu B( \phi) \cdot \sigma A- is a known operator where \Pi=\frac{1}{2a} \frac{d}{d \phi}...
  9. P

    Interacting Spins , Heisenberg Hamiltonian , Tensor product

    Hello, I'm studying the Heisenberg Model. Given the Hamiltonian H = - 2 \frac{J}{\hbar^2} \vec{S}_1 \vec{S}_2 with \begin{equation} \vec{S} = \frac{\hbar}{2} \; \left( \begin{array}{ccc} \sigma_x \\ \sigma_y \\ \sigma_z \end{array} \right) \end{equation} \sigma_{x,y,z} \quad...
  10. P

    Constructing Norms on Tensor Products of Finite Dimensional Vector Spaces

    I was wondering about useful norms on tensor products of finite dimensional vector spaces. Let V,W be two such vector spaces with bases \{v_1,\ldots,v_{d_1}\} and \{w_1,\ldots,w_{d_2}\}. We further assume that each is equipped with a norm, ||\cdot||_V and ||\cdot||_W. Then the tensor product...
  11. G

    Tensor product of vector space problems

    Tensor product of vector space problms Homework Statement I'm currently reading Halmos's book "Finite dimensional vector spaces" and I find it excellent. However, I'm having some problems with his definition of the tensor product of two vector spaces, and I hope you could help me clear it...
  12. G

    Understanding Halmos's Definition of Tensor Product of Vector Spaces

    Hello, I'm currently reading Halmos's book "Finite dimensional vector spaces" and I find it excellent. However, I'm having some problems with his definition of the tensor product of two vector spaces, and I hope you could help me clear it out. Here's what he writes: "Definition: The tensor...
  13. J

    Is the tensor product T^ab T_ab non-negative?

    I think the answer depends on the metric signature (right?), so for this topic, let's define the signature of the metric to be positive I'm curious what properties a tensor T must have, for the following to be true: T^{ab} T_{ab} \ge 0 Note: I am not talking about the stress energy tensor. I'm...
  14. M

    Is M_n(K) isomorphic to K \otimes_F M_n(F) as F-algebras?

    So this is supposed be an introductory problem for tensor products that I was trying to do to verify I am understanding tensor products...turns out I'm not so much Show that M_n(K) is isomorphic as an F-algebra to K \otimes_F M_n(F) where F is a field and K is an extension field of F and...
  15. B

    Unitary Operator on a Tensor Product

    Having a little trouble deriving a result in a book. If I have an operator of the form e^{\alpha A \otimes I_n} Where alpha is a complex constant, A a square hermitian matrix and I the identity matrix. Now if I want to operator that on a tensor product, say for instance c_{n,1} |1...
  16. G

    Tensor product of vector spaces: confusion

    Dear all, I've read the math that defines a tensor product by means of the universal property and I've studied the tensor product construction through a quotient of the free vector space on the cartesian product of two vector spaces. All other constructions of the tensor products are naturally...
  17. G

    Understanding the Role of Tensor Product in Quantum Systems - Goldbeetle

    Dear all, why is it that the tensor product is used to describe two quantum system described by Hilbert spaces H1 and H2? What were the example systems or situations that were generalized and that led to this postulate? Thanks. Goldbeetle
  18. Rasalhague

    PF tensor product space equation

    In the first equation on this page, https://www.physicsforums.com/library.php?do=view_item&itemid=335 is there a loss of generality when there exists a metric tensor, since in that case V \otimes V \otimes V^* \neq V \otimes V^* \otimes V, because T^{ij}\;_{k} \neq T^{i}\;_{k}\;^{j}.
  19. Fredrik

    How is the Tensor Product of Vector Spaces Constructed?

    I still don't fully understand the explicit construction of the tensor product space of two vector spaces, in spite of the efforts by several competent posters in another thread about 1.5 years ago. I'm hoping someone can provide the missing pieces. First, a summary of the things I think do...
  20. O

    Tensor Product of Pauli Matrices

    Homework Statement Suppose that [\sigma_a]_{ij} and [\eta_a]_{xy} are Pauli matrices in two different two dimensional spaces. In the four dimensional tensor product space, define the basis: |1\rangle=|i=1\rangle|x=1\rangle |2\rangle=|i=1\rangle|x=2\rangle |3\rangle=|i=2\rangle|x=1\rangle...
  21. T

    Construction of the Tensor Product

    For some reason, tensors seem to be a terribly mysterious topic, mentioned all the time, but rarely explained in clear terms. Whenever I read a paper which uses them, I get the feeling I'm listening to a blind man talk about an elephant. They have to do with multilinear maps. They are a...
  22. J

    Correspondence between between tensor product and bilinear maps

    When considering finite dimensional vector spaces V and W over a field K, there exists a natural isomorphism between their tensor product and the space of bilinear maps from the cartesian product of the dual spaces to the underlying field. However, the text I'm reading asserts that if V and W...
  23. W

    Tensor Product of V1 and V2 in Vector Space V: 0 Intersection Required?

    If V1 and V2 are both subspaces of a vector space V, then in order for their tensor product to be defined, does the intersection of V1 and V2 have to be 0?
  24. S

    Happy holidays,BenDecomposing tensor product of GL(2,C) representations

    Hi PF bloggers, I'm trying to decompose a representation of GL(2,C) on C^2\otimes Sym^{N-2}(C^2) into IRREPS and I'm wondering if there's anything similar to Clebsh-Gordan coefficients which could assist one in this task? Any good references one could point out? Happy holidays! P.S...
  25. A

    What is the definition of R in the tensor product construction?

    Hello, So I'm trying to understand the construction of the tensor product of 2 vector spaces as stated in the http://en.wikipedia.org/wiki/Tensor_product" . Now, in the article it states that the tensor product of two vector spaces V and W is the quotient space F( VxW )/R (F( VxW ) being the...
  26. J

    Adv. linear algebra, tensor product, dual space

    Homework Statement Prove that V* \otimes W is isomorphic to Hom(V,W) in the case that one of V and W is finite-dimensional. The Attempt at a Solution A pair (l,w) in V*xW defines a map V->W, v->l(v)w. This map is bilinear. Because it's bilinear, it defines a bilinear map V* \otimes W ->...
  27. N

    What is a Tensor Product and How Does it Relate to Vectors and Matrices?

    Hi, can anyone please explain me how to understand this term? I tried to expand it, but seems I may not be right, so can anyone help me with expasion of this rhs term below? T is suppsoed to be symmetric, but when I expand it it doesn't seem to be symmetric, please help. consider 2 mutually...
  28. JasonJo

    Taking the Trace of a Tensor Product

    Hey guys, How exactly do you take the trace of a tensor product? Do I take the trace of each tensor individually and multiply their traces? For example, how would I take the trace of this tensor product: -B^{c}_b B_{ac}
  29. MathematicalPhysicist

    Is Tensor Product Uniqueness Dependent on the Choice of Linear Functions?

    There's a question that asks me to show that there exists a unique linear transformation from: f\otimes g: V_1\otimes W_1\rightarrow V_2\otimes W_2 where f and g are linear transformations f:V1->V2, g:W1->W2 that satisfies: (f\otimes g)(u\otimes v)=f(u)\otimes g(v) well I think that what I...
  30. M

    Understanding the Simplicity of Tensor Products: Bishop and Goldberg's Approach

    Hello all. Most modern treatments of the tensor product use equivalence classes to define a quotient space in order to define the tensor product. However in Tensor Analysis on Manifolds, Bishop and Goldberg are much less complicated. I have attached a near word for word copy of their...
  31. Fredrik

    What Is the Tensor Product of Vector Spaces?

    I'm reading the Wikipedia article, trying to understand the definition of the tensor product V\otimes W of two vector spaces V and W. The first step is to take the cartesian product V\times W. The next step is to define the "free vector space" F(V\times W) as the set of all linear combinations...
  32. C

    Tensor product commutes with pullback?

    Hello, I have an exercise where we have to pullback a metric g^{ij} \, \mathrm dx_i \, \mathrm dx_j under a function f: M \rightarrow N (actually in this case M = \mathbf{R}^2, N = \mathbf{R}^3, but that's not really relevant). I managed to do it, provided that the pullback commutes with the...
  33. C

    The Physical Significance of Tensor Product

    what is the tensor product's physical significance? I know what it does mathematically, but what does it mean. I have looked on textbooks and wikipedia but i still can't understand the physical signifcance.
  34. T

    Antisymmetrized tensor product

    Could someone explain to me what this is and explain the formula to me? I don't think I understand the formula. I don't think I quite understand why that's the antisymmetrized tensor product. Maybe its because i don't want o think about it too much.
  35. T

    Tensor Product: Basis for Higher Order Tensors and Its Proof

    How can we prove that the tensor product between two tensors of lower rank forms the basis for ANY tensor of higher order? also WHY is it it true? ANY TENSOR of higher order.
  36. T

    The tensor product and its motivation

    could someone please explain to me what the tensor product is and why we invented it? most resources just state it without listing a motivation.
  37. R

    Tensor Product Explained - Examples Included

    Could someone tell me what the tensor product is and give an example?
  38. S

    Tensor Product Explained: Best Elementary Tensor Algebra Books

    Can someone please explain to me what is the tensor product and any good elementary tensor algerbra books?
  39. S

    Mathematica How to Perform a Tensor Product Between Two Matrices in Mathematica?

    Hi. I am trying to perform a tensor product between two 2x2 matrices using Mathematica. When i simply use the symbol for tensor product and put it between the two matrices, the program just reproduce the same expression when i execute it. I tried to multiply the individual elements of...
  40. Eye_in_the_Sky

    How is the Tensor Product Defined and Used in Vector Spaces?

    on the "Tensor Product" In response to some remarks made in the thread "How do particles become entangled?", as well as a number of private messages I have received, I feel there is some need to post some information on the notion of a "tensor product". Below, a rather intuitive look at the...
  41. M

    Tensor Product of Covariant and Contravariant Vectors

    It's possible to do the tensor product of two contravariant vectors? It's possible to do the tensor product of two covariant vectors?
Back
Top