Tensor Definition and 1000 Threads

  1. genxium

    What is the parity inversion of antisymmetric tensor

    First by antisymmetric tensor I mean the "totally antisymmetric tensor" like this: ##\epsilon^{\alpha\beta\gamma\delta} = \left\{ \begin{array}{clcl} +1 \;\; \text{when superscripts form an even permutation of 1,2,3,4} \\ -1 \;\; \text{when superscripts form an odd permutation of 1,2,3,4} \\ 0...
  2. U

    Tensor Contraction: Contracting ##\mu## with ##\alpha##?

    What do they mean by 'Contract ##\mu## with ##\alpha##'? I thought only top-bottom indices that are the same can contract? For example ##A_\mu g^{\mu v} = A^v##.
  3. W

    A suggested operational definition of tensors

    The two tensor definitions I'm (newly) familiar with, by transformation rules, and as a map from a tensor product space to the reals, don't tell me what a tensor does, and to the best of my knowledge they don't make it apparent. So, I'm looking for an operational definition, and suggesting the...
  4. binbagsss

    Energy-momentum tensor radiation-dominated universe.

    I'm looking at 'Lecture Notes on General Relativity, Sean M. Carroll, 1997' Link here:http://arxiv.org/pdf/gr-qc/9712019.pdf Page 221 (on the actual lecture notes not the pdf), where it generalizes that the energy-momentum tensor for radiation - massive particles with velocities tending to...
  5. caffeinemachine

    MHB Natural Isomorphism b/w Dual Spaces Tensor Prod & Multilinear Form Space

    I am trying to prove the following. Let $V_1, \ldots, V_k$ be finite dimensional vector spaces over a field $F$. There is a natural isomorphism between $V_1^*\otimes\cdots\otimes V_k^*$ and $\mathcal L^k(V_1, \ldots, V_k;\ F)$. Define a map $A:V_1^*\times\cdots\times V_k^*\to \mathcal L^k(V_1...
  6. caffeinemachine

    MHB A Basic Question Regarding the Universal Property of the Tensor Product.

    (All vector spaces are over a fixed field $F$). Universal Property of Tensor Product. Given two finite dimensional vector spaces $V$ and $W$, the tensor product of $V$ and $W$ is a vector space $V\otimes W$, along with a multilinear map $\pi:V\times W\to V\otimes W$ such that whenever there is...
  7. C

    How Does Covariant Differentiation Affect Tensor Fields?

    Homework Statement Let ##T## be a ##(1, 1)## tensor field, ##\lambda## a covector field and ##X, Y## vector fields. We may define ##\nabla_X T## by requiring the ‘inner’ Leibniz rule, $$\nabla_X[T(\lambda, Y )] = (\nabla_XT)(\lambda, Y ) + T(\nabla_X \lambda, Y ) + T(\lambda, \nabla_X Y ) . $$...
  8. JonnyMaddox

    Program that writes tensor equations out

    Hi, I'm looking for a program that spits out fully summed index equations. For example T_{ii} in, out comes T_{11}+T_{22}+... and so on, with Einstein summation convention.
  9. JonnyMaddox

    Tensor product and representations

    Hi, I that <I|M|J>=M_{I}^{J} is just a way to define the elements of a matrix. But what is |I>M_{I}^{J}<J|=M ? I don't know how to calculate that because the normal multiplication for matrices don't seem to work. I'm reading a book where I think this is used to get a coordinate representation of...
  10. U

    Contracting \mu & \alpha - What Does It Mean?

    What do they mean by contracting ##\mu## with ##\alpha## ?
  11. K

    Solving Tensor Index Manipulation Confusion

    I am making mess of the following expression.. i have following expression ## \frac{\partial{g}}{\partial{g_{\mu j}}} *g_{\nu j}=g \delta^{\mu} _{\nu} ## then I have sum over j only in the above expression. But above expression is nonzero only when ##{\mu}## is equal to ##\nu##. So we have ##...
  12. U

    Is Acceleration Perpendicular to Velocity in Energy-Momentum Tensor Algebra?

    Homework Statement (a) Show acceleration is perpendicular to velocity (b)Show the following relations (c) Show the continuity equation (d) Show if P = 0 geodesics obey: Homework EquationsThe Attempt at a SolutionPart (a) U_{\mu}A^{\mu} = U_{\mu}U^v \left[ \partial_v U^{\mu} +...
  13. U

    Einstein Tensor - Particle at rest?

    Homework Statement (a)Find Christoffel symbols (b) Show the particles are at rest, hence ##t= \tau##. Find the Ricci tensors (c) Find zeroth component of Einstein Tensor Homework EquationsThe Attempt at a Solution Part (a)[/B] Let lagrangian be: -c^2 \left( \frac{dt}{d\tau}\right)^2 +...
  14. B

    Tensor Fields - Tensor Product of Two Gradient Operators

    I'm trying to re-derive a result in a paper that I'm struggling with. Here is the problem: I wish to calculate (\nabla \otimes \nabla) h where \nabla is defined as \nabla = \frac{\partial}{\partial r} \hat{\mathbf{r}}+ \frac{1}{r} \frac{\partial}{\partial \psi} \hat{\boldsymbol{\psi}} and...
  15. C

    Evaluating contractions of a tensor product

    Homework Statement Consider ##T = \delta \otimes \gamma## where ##\delta## is the ##(1,1)## Kronecker delta tensor and ##\gamma \in T_p^*(M)##. Evaluate all possible contractions of ##T##. Homework Equations Tensor productThe Attempt at a Solution ##\gamma## is therefore a ##(0,1)## tensor...
  16. I

    Heuristic Evaluation of Stress-Energy Tensor

    I've been reading through Schutz's A First Course in General Relativity, and my solution to a particular problem has got me wondering if I'm being careful enough in my approach. The problem states: Show that, in the rest frame ##\mathcal{O}## of a star of constant luminosity ##L## (total energy...
  17. Abolaban

    Tensor calculus> definition of contravariants

    Hello Big minds, In the book of Arfken [Math Meth for Physicists] p 134 he defined contravariant tensor...my question is about a_ij he defined them first as cosines of an angle of basis then he suddenly replaced them by differential notation...why is that? cosines are not mention in this...
  18. M

    Normal Stress/Shear Stress from stress tensor

    Homework Statement If \sigma_{ij} = \begin{pmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{pmatrix} represents a stress tensor, on what plane(s) will the normal stress be a minimum? On what plane(s) will the shear stress be a maximum? Homework EquationsThe Attempt at a Solution The first...
  19. T

    Learning to Simplify the Curvature Tensor

    I just watched susskind video on EFE but he didnt show us how to convert curvature tensor(the one with 4 indices) to that of Ricci tensor. Can anyone help me with this? Try to simplify it as I just started this.
  20. R

    Impose Uniqueness on Diagonalization of Inertia Tensor?

    Given an inertia tensor of a rigid body I, one can always find a rotation that diagonalizes I as I = RT I0 R (let's say none of the value of the inertia in I0 equal each other, though). R is not unique, however, as one can always rotate 180 degrees about a principal axis, or rearrange the...
  21. N

    Tensor Analysis in vector and matrix algebra notation

    Is there anywhere that teaches tensor analysis in both tensor and non tensor notation, because I'm having to pause each time i look at something in tensor notation and phrase it mentally in non tensor notation at which point it becomes staggeringly simpler. Any help apreciated
  22. binbagsss

    Meaning of tensor invariant, covariant differentiation

    E.g - considering co variant differentiation, The issue with the normal differentiation is it varies with coordinate system change. Covariant differentiation fixes this as it is in tensor form and so is invariant under coordinate transformations.'If a tensor is zero in one coordinate system...
  23. BiGyElLoWhAt

    Understanding Tensors for General Relativity: A Comprehensive Guide

    Hi all, I'm fairly new to GR, and I'm also somewhat new to tensors as well. I'm looking for some detailed explanation of a tensor, as I want to begin studying GR mathematically. I watched a video that was posted on PF not too long ago that was pretty good. I'm having trouble remembering who it...
  24. binbagsss

    Understanding Well-Defined Tensor on Manifold: Basic Concepts

    I'm trying to understand what exactly it means by some tensor field to be 'well-defined' on a manifold. I'm looking at some informal definition of a manifold taken to be composed of open sets ##U_{i}##, and each patch has different coordinates. The text I'm looking at then talks about how in...
  25. C

    Expressing kinetic energy as sum of vector and tensor terms

    Homework Statement A system of N particles described by the vector coordinates ##\mathbf{r}_k, k = 1,2, \dots, N ## subject to 3N - f constraints can be expressed in terms of generalised coordinates ##q_i, i=1,2, \dots, f## by ##\mathbf{r}_k = \mathbf{r}_k(q_1, q_2, \dots, q_f, t)## a) Prove...
  26. B

    Einstein's Formulation of Tensor Equation: Was He Lucky?

    I understand that all physical laws essentially codify mathematically observed behavior. Newton codified Kepler and Brahe data, for example. Quantum Mechanics codifies observed particle behavior at relatively low speeds, etc. But Einstein had no empirical data to work from… So, I do not...
  27. T

    Why does the h tensor represent gravity waves?

    What makes it more "gravity-wavy" than the fi or psi scalar of the vector perturbations? (Im talking about metric perturbations) Thanks!
  28. U

    What Are the Steps to Solve Faraday Tensor and Index Notation Problems?

    Homework Statement (a) Find faraday tensor in terms of ##\vec E## and ## \vec B ##. (b) Obtain two of maxwell equations using the field relation. Obtain the other two maxwell equations using 4-potentials. (c) Find top row of stress-energy tensor. Show how the b=0 component relates to j...
  29. G

    Calculate metric tensor in terms of Mass

    Homework Statement Suppose everything is moving slowly, How can we find the metric tensor in GR in terms of the mass contained. Homework Equations I understand in case of everything moving slowly only below equation is relevant - R00 - ½g00R = 8πGT00 = 8πGmc2 The Attempt at a Solution None.
  30. binbagsss

    R computation from 1 independent Riemann tensor component

    We have ##R^{1}_{212}## as the single independent Riemann tensor component, and I'm after ##R##. From symmetry properties and contracting we can attain the other non-zero components. The solution then states that ##R_{11}=R^{1}_{111} + R^{2}_{121}=R^{2}_{121}## . I thought it would have been...
  31. T

    Understanding Einstein Field Equation & Metric Tensor

    Hi guys. I am trying to understand einstein field equation and thus have started on learning tensor. For metric tensor, is it just comprised of two contra/covariant vectors tensor product among each other alone or does it requires an additional kronecker delta? I am confused about the idea...
  32. binbagsss

    Killing tensor notation quick questions

    My notes read that, the quantity ##K^{2}=K_{uv}V^{u}V^{v}## is constant along geodesics, where ##K## is a killing vector. I know my definition that the quantity on the RHS is conserved, I'm just wondering why do we call it ##K^{2}##, rather than anything else? In analogy to a killing vector, if...
  33. nomadreid

    Mismatched dimensions in a tensor product with CNOT

    I am working through an explanation in Nielson and Chuang's Quantum Computation book where they apply a CNOT gate to a state α|0>|00> + β|1>|00>. (The notation here is |0> = the column vector (1,0) and |1>=(0,1), while |00> = |0>|0>, and |a>|b>=|a>⊗|b>, ⊗ being the tensor (outer) product. I am...
  34. L

    Ricci Tensor Equation in Zee's "Einstein's Gravity in a Nutshell" Explained

    In Zee's "Einstein's Gravity in a Nutshell" on page 363, while deriving the Schwarzschild solution, we have How does it work? How are the rhs and lhs equal? Where does the factor 2 come from, why just one derivative left? thanks for any replies!
  35. N

    Experimental determination of the metric tensor

    Does anyone know a reference with a discussion on the experimental determination of the metric tensor of spacetime? I only know the one in "The theory of relativity" by Møller, pages 237-240. https://archive.org/details/theoryofrelativi029229mbp
  36. Einj

    Riemann tensor and derivatives of ##g_{\mu\nu}##

    Hello everyone, I'm studying Weinberg's 'Gravitation and Cosmology'. In particular, in the 'Curvature' chapter it says that the Riemann tensor cannot depend on ##g_{\mu\nu}## and its first derivatives only since: What I don't understand is how introducing the second derivatives should change...
  37. M

    Understanding the Metric Tensor: A 4-Vector Perspective

    Some subtleties of the metric tensor are just becoming clear to me now. If I take ##g_{\mu\nu}=diag(+1,-1,-1,-1)## and want to write ##\partial_\mu\phi^\mu##, it would be ##\partial_0\phi^0 -\partial_i\phi^i##, correct? ##\phi## is a 4-vector.
  38. H

    Little help with tensor antisymmetrization

    Hi everyone, All the books I have read until this moment only give an example of two one-forms antissymetrization, like A_{[\mu}B_{\nu]} but I want some examples like A_{[\mu\nu}B_{\sigma \rho]} or A_{[\mu}B_{\sigma \rho]} Does someone know a book or lecture notes that teach this or just...
  39. binbagsss

    Form of Rienmann Tensor isotrpic & homogenous metric quick Question

    Context: Deriving the maximally symmetric- isotropic and homogenous- spatial metric I've seen a fair few sources state that the Rienamm tensor associated with the metric should take the form: * ##R_{abcd}=K(g_{ac}g_{bd}-g_{ad}g_{bc})## The arguing being that a maximally symmetric space has...
  40. Telemachus

    Tensor calculus, dummy indices

    Hi there. When I have dummy indices in a tensor equation with separate terms, I wanted to know if I can rename the dummies in the separate terms. I have, in particular: \displaystyle w_k=-\frac{1}{4}\epsilon_{kpq}\left [ \frac{\partial u_p}{\partial x_q}-\frac{\partial u_q}{\partial x_p}...
  41. P

    Ricci tensor of schwarzschild metric

    In schwarzschild metric: $$ds^2 = e^{v}dt^2 - e^{u}dr^2 - r^2(d\theta^2 +sin^2\theta d\phi^2)$$ where v and u are functions of r only when we calculate the Ricci tensor $R_{\mu\nu}$ the non vanishing ones will only be $$R_{tt}$$,$$R_{rr}$$, $$R_{\theta\theta}$$,$$R_{\phi\phi}$$ But when u and v...
  42. S

    General Relativity: Curvature and Stress Energy Tensor

    Hello all, I have a quick question regarding the relation of the space-time metric and the curvature. I have determined the space-time metric, g_(alpha beta), but I am unsure as how to go from the line element ds^2 = [ 1 + (dz/dr)^2] dr^2 + r^2 dtheta^2 and the space-time metric g to the...
  43. M

    Stress-energy tensor as source of gravity

    Hello. This is a question for the philosophers. I know just a little bit about QT and GR, but have a solid background in QM, classical physics and some particle physics. I was wondering about the stress energy tensor. I know that the graviton must have spin 2 because the source of gravity is a...
  44. M

    Tensor product over 3 (or more) vector spaces

    Homework Statement I have the operators ##D_{\beta}:V_{\beta}\rightarrow V_{\beta}## ##R_{\beta\alpha 1}: V_{\beta} \otimes V_{\alpha 1} \rightarrow V_{\beta}\otimes V_{\alpha 1}## ##R_{\beta\alpha 2}: V_{\beta} \otimes V_{\alpha 2} \rightarrow V_{\beta}\otimes V_{\alpha 2}## where each...
  45. T

    Tensor moment of inertia -- why is there a "-" sign?

    why there is a negative sign in the tensor moment of inertia??
  46. 3

    What Textbook Covers Hooke's Law in Tensor Form and Shear Stress?

    Hi! I'm studying physics and currently taking the first mechanics course. After dealing with rotation and gyroscopes, now we're working on things like shear stress, and Hooke's law in tensor form etc. I've got Kleppner/Kolenkow but shear stress, Hooke's law in tensor form and tensors in...
  47. B

    Tensor calculus independent study questions?

    I'm a mathematics major and up until now I've taken Calc 1,2,3 (so single + multivariable) a combined course in Elementary Linear Algebra + Differential Equations and PDE's. My school doesn't offer any tensor calculus classes, but I was interested in learning some of it on my own. Do I have...
  48. P

    Effective tensor of a polycrystal

    Hi everybody, i have a problem that i wanted to share with you if we consider a polycrystal made of cylindrical fibers following a von mises-fisher distribution equation (17) in http://bit.do/vmisesfisher (called orientation distribution function of fibers) . i must change the probability...
  49. U

    How is the Faraday Tensor related to the 4-potential?

    The Faraday Tensor is given by: Consider the following outer product with the 4-potential: The Faraday Tensor is related to the 4-potential: F^{mn} = \Box^{m} A^n - \Box^n A^m For example, ## F^{01} = -\frac{1}{c} \frac{\partial A^x}{\partial t} - \frac{1}{c}\frac{\partial...
  50. 3

    Exploring Tensor Concepts with MIT OCW Courses

    Hello, I am working through the MIT OCW courses 8.01 and 8.012. At my university we already learned about tensors in the first mechanics course but I don't really understand them completely. Therefore I am searching for some MIT OCW course that covers tensors. I'd be glad at any help. Apart...
Back
Top