In mathematics, a tensor is an algebraic object that describes a (multilinear) relationship between sets of algebraic objects related to a vector space. Objects that tensors may map between include vectors and scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system.
Tensors have become important in physics because they provide a concise mathematical framework for formulating and solving physics problems in areas such as mechanics (stress, elasticity, fluid mechanics, moment of inertia, ...), electrodynamics (electromagnetic tensor, Maxwell tensor, permittivity, magnetic susceptibility, ...), or general relativity (stress–energy tensor, curvature tensor, ...) and others. In applications, it is common to study situations in which a different tensor can occur at each point of an object; for example the stress within an object may vary from one location to another. This leads to the concept of a tensor field. In some areas, tensor fields are so ubiquitous that they are often simply called "tensors".
Tullio Levi-Civita and Gregorio Ricci-Curbastro popularised tensors in 1900 - continuing the earlier work of Bernhard Riemann and Elwin Bruno Christoffel and others - as part of the absolute differential calculus. The concept enabled an alternative formulation of the intrinsic differential geometry of a manifold in the form of the Riemann curvature tensor.
My notes seem to imply this should be obvious :
If i consider the covariant deriviative then i get something like
christoffel= nabla ( cov derivative ) - partial
So difference of two of them will stil have the partial derivatuves present ,assuming these are labelled by a different index ...
The energy momentum tensor and its correlation to reimannian curvature is fascinating to think about. How much are the components and which of the components are taken into consideration when doing real physics. I suppose astrophysicists and cosmologists would be the main group of scientists...
I have to find the inertia tensor of these rods and I don't have the concept that clear...
I mean, I know the formulas like:
##I_{xx}=\int y^2 + z^2 dm##
##I_{xy}=\int xy dm##
But I don't know what ##x, y, z, dm## stand for. In other words, I don't know what I should replace in the formula...
The components of the energy tensor are defined sometimes as the flux of the ith component of the momentum vector across some component jth of constant surface. But isn't the tensor a function of points of spacetime just as the metric? How can you evaluate a surface of j when the tensor is a...
I am now reading this paperhttps://arxiv.org/pdf/gr-qc/0405103.pdf, which is related to the energy condition in wormhole. Nevertheless, I got a problem in Eq.(6), which derives from so-called ANEC in Eq.(2): $$\int^{\lambda2}_{\lambda1}T_{ij}k^{i}k^{j}d\lambda$$
And I apply the worm hole space...
A rod rotates freely (edit: about an axis perpendicular to its length) in empty space. Working in an inertial coordinate system where the rod rotates around a fixed point, the rod is straight, of length ##2L## in its spinning state, and its mass distribution is symmetric along its length. The...
In this derivation,i am not sure why the second derivative of the vector ## S_j '' ## is equal to ## R^{u_j}{}_{xyz} s^y_j v^z y^x##
could anyone explain this bit to me
thank you
it seems ## S_j '' ## is just the "ordinary derivative" part but it is not actually equal to ## R^{u_j}{}_{xyz}...
This should be a trivial question. I am trying to compute the spherical tensor ##T_0^{(0)} = \frac{(U_1 V_{-1} + U_{-1} V_1 - U_0 V_0)}{3}## using the general formula (Sakurai 3.11.27), but what I get is:
$$
T_0^{(0)} = \sum_{q_1=-1}^1 \sum_{q_2=-1}^1 \langle 1,1;q_1,q_2|1,1;0,q\rangle...
The question is partially taken from Griffith's book. I am confused about the physical meaning of momentum in fields. I have determined the solution and found that in part d the momentum crossing the x-y plane is some value in the positive z direction. I don't however understand the physical...
When I'm going from a smooth manifold to R with V* X V -> R what does the R scalar stand for. Is it some length in the manifold? and Does this have to do with the way V* and V are defined, since one is a contra-variant and one is a co-variant, are they related in the way the Pythagoras formula...
Unfortunetly, I found across the web only the case where there's no source, in which case ##\partial_\alpha T^{\alpha \beta} = 0##. I'm considering Minkowski space with Minkowski coordinates here.
When there's source, is it true that ##\partial_\alpha (T^{\alpha \beta}) = 0## or is it ##\int...
Before writing out each component I'm going to simplify ##\vec{I}## to the best of my abilities
$$\vec{I} = \int \left(\hat{r}\cdot\vec{r'}\right) \vec{r'} \rho\left( \vec{r'} \right)\, d^3r'$$
$$\vec{I} = \hat{r} \cdot \int \vec{r'} \left( x' , y', z' \right) \rho\left( \vec{r'} \right)\...
I am trying to derive the expression in components for the covariant derivative of a covector (a 1-form), i.e the Connection symbols for covectors.
What people usually do is
take the covariant derivative of the covector acting on a vector, the result being a scalar
Invoke a product rule to...
Good evening everybody.
This is my suggestion for answer.
The tensor is diagonal and the compression is a plane stress
equilibre equation div(σ)=0
so:
So, does that means that
= f(y.z) = Ay+Bz and
=f(x.z)= Cx+Dz
A,B,C and D are constants.
Is that what the question meant?
Thank you in...
Apologies it's been a little while since I've done this, but I believe the rule is, that if the object is not a tensor you can not rename the dummy index?
For example, i have the action
##\int d^3 x \epsilon^{uvp} A_u \partial v A_p ## and I want to write this in terms of the ##i## and ##0##...
Summary: Meaning of each member being a unit vector, and how the products of each tensor can be averaged.
Hello!
I am struggling with understanding the meaning of "each member is a unit vector":
I can see that N would represent the number of samples, and the pointy bracket represents an...
There are plentty of textbooks and online papers that talk about the energy momentum tensor, but they all look to me as if they're only covering the very introductory aspects of it. To put another way, it seems that there's much more to be learn.
I would like to know if university physics...
Hi All.
Given that we may write
And that the Stress-Energy Tensor of a Scalar Field may be written as;
These two Equations seem to have a similar form.
Is this what would be expected or is it just coincidence?
Thanks in advance
Does anyone know of a set of invariants for the stress energy tensor? In particular, I would like to know if there is a small set of linearly independent invariants, each of which (or at least some of which) have a clear physical meaning.
In Newtonian gravity, non-rest mass contributions to gravitational effects are ignored and for many purposes (e.g. low precision solar system astronomy, N-body approximations of galaxy or galaxy cluster dynamics), the other contributions that enter Einstein's field equations through the...
On pages 42-43 of the book "Tensors: Mathematics of Differential Geometry and Relativity" by Zafar Ahsan (Delhi, 2018), the calculation for the angle between Ai=(1,0,0,0) (the superscript being tensor, not exponent, notation) and Bi=(√2,0,0,(√3)/c), where c is the speed of light, in the...
I have a feeling that topics related to the Energy Momentum tensor are the most difficult part when learning Relativity. At least to me, it seems that the textbooks I'm reading assume that readers have a previous knowledge on some other area, maybe it's classical mechanics of fluids or something...
My attempt at ##g_{\mu \nu}## for (2) was
\begin{pmatrix}
-(1-r^2) & 0 & 0 & 0 \\ 0 &\frac{1}{1-r^2} & 0 & 0 \\ 0 & 0 & r^2 & 0 \\ 0 & 0 & 0 & r^2 \sin^2(\theta)
\end{pmatrix}
and the inverse is the reciprocal of the diagonal elements.
For (1) however, I can't even think of how to write the...
Hi PF, I’m working through “A Relativist’s Toolkit” by Poisson, and I’m in the section on geodesic congruances, subsection: kinematics of a deformable medium. I got through the section on the 2-dimensional example that introduced expansion, shear, and rotation just fine, but I’m having trouble...
Why representation of Lorentz group of shape (A,A) corespond to totally symmetric traceless tensor of rank 2A?
For example (5,5)=9+7+5+3+1 (where + is dirrect sum), but 1+5+3+9+7<>(5,5) implies that (5,5) isn't symmetric ?
See Weinberg QFT Book Vol.1 page 231.
You're on Earth. You throw a ball and watch its trajectory. It's curved. That's because the Earth is curving space-time at every point along the trajectory. But the Earth itself is not present along the trajectory - there is no matter along the trajectory (let's ignore the air and any radiation...
Hello, I am calculating the krauss operators to find the new density matrix after the interaction between environment and the qubit.
My question is: Is there an operational order between matrix multiplication and tensor product? Because apparently author is first applying I on |0> and X on |0>...
So if ##P_{0}## is an event, and I have ##\mathcal {g_{\mu\nu}(P_{0})}=0## and ##\mathcal {g_{\mu\nu,\alpha\beta}(P_{0})}\neq0##, does this notation mean ##\partial\alpha\partial\beta## or simply ##\partial(\alpha\beta)##? And what is the significance of it? Why can't it be zero in curved spacetime?
Hi, I'm worried I've got a grave misunderstanding. Also, throughout this post, a prime mark (') will indicate the transformed versions of my tensor, coordinates, etc.
I'm going to define a tensor.
$$T^\mu_\nu \partial_\mu \otimes dx^\nu$$
Now I'd like to investigate how the tensor transforms...
I brought up this subject here about a decade ago so this time I'll try to be more specific to avoid redundancy.
In chapter five of Bernard F. Schutz's A First Course In General Relativity, he arrives at the conclusion that in flat space the covariant derivative of the metric tensor is zero...
Suppose I have a system of two (possibly interacting) spins of 1/2. Then the state of each separate spin can be written as a ##\mathbb{C}^2## vector, and the spin operators are made from Pauli matrices, for instance the matrices
##\sigma_z \otimes \hat{1}## and ##\hat{1} \otimes \sigma_z##...
Calculating the christoffel symbols requires taking the derivatives of the metric tensor. What are you taking derivatives of exactly? Are you taking the derivatives of the inner product of the basis vectors with respect to coordinates? In curvilinear coordinates, for instance curved spacetime in...
This was my attempt at a solution and was wondering where did I go wrong: -\frac{\partial}{\partial p_\mu}\frac{1}{\not{p}}=-\frac{\partial}{\partial p_\mu}[\gamma^\nu p_\nu]^{-1}=\gamma^\nu\frac{\partial p_\nu}{\partial p_\mu}[\gamma^\sigma...
Hi there,
I'm just starting Zee's Einstein Gravity in a Nutshell, and I'm stuck on a seemingly very easy assumption that I can't figure out. On the Tensor Field section (p.53) he develops for vectors x' and x, and tensor R (with all indices being upper indices) : x'=Rx => x=RT x' (because R-1=RT...
The energy-momentum tensor of a free particle with mass ##m## moving along its worldline ##x^\mu (\tau )## is
\begin{equation}
T^{\mu\nu}(y^\sigma)=m\int d \tau \frac{\delta^{(4) }(y^\sigma-x^\sigma(\tau ))}{\sqrt{-g}}\frac{dx^\mu}{d\tau}\frac{dx^\nu}{d\tau}.
\end{equation}
Let contract...
The energy-momentum tensor of a free particle with mass ##m## moving along its worldline ##x^\mu (\tau )## is
\begin{equation}
T^{\mu\nu}(y^\sigma)=m\int d \tau \frac{\delta^{(4) }(y^\sigma-x^\sigma(\tau ))}{\sqrt{-g}}\frac{dx^\mu}{d\tau}\frac{dx^\nu}{d\tau}.\tag{2}
\end{equation}
The covariant...
We're trying to reduce the tensor integral ##\int {\frac{{{d^4}k}}{{{{\left( {2\pi } \right)}^4}}}} \frac{{{k^\mu }{k^\nu }}}{{{{\left( {{k^2} - {\Delta ^2}} \right)}^n}}}{\rm{ }}## to a scalar integral (where ##{{\Delta ^2}}## is a scalar). We're told that the tensor integral is proportional...
My understanding is that this tensor contains sources for spacetime curvature, analogous to how charge and current are sources for electric and magnetic fields. In other words, the elements of this tensor, such as mass density, are specified and used in the Einstein equation to solve for the...
Hi, I've found this property of Strenght Field Tensors:
$$F_{\mu}^{\nu}\tilde{F}_{\nu}^{\lambda}=-\frac{1}{4}\delta_{\mu}^{\lambda}F^{\alpha\beta}\tilde{F}_{\alpha\beta}$$
Where $$\tilde{F}_{\mu\nu}=\frac{1}{2}\varepsilon_{\mu\nu\alpha\beta}F^{\alpha\beta}, \qquad \varepsilon_{0123}=1$$
I've...
I am trying to find the correct formula for the electromagnetic stress energy tensor with the sign convention of (-, +, +, +).
Is it (from Ben Cromwell at Fullerton College):
$$T^{\mu \nu} = \frac{1}{\mu_0}(F^{\mu \alpha}F^{\nu}{}_{\alpha} - \frac{1}{4}g^{\mu\nu}F_{\alpha\beta}F^{\alpha...
Similarly the paper by @buchert and @ehlers
https://arxiv.org/abs/astro-ph/9510056
Here the author has defined ##v_{ij}=\frac{\partial v_i}{\partial x_j}=\frac{1}{2}(\frac{\partial v_i}{\partial x_j}+\frac{\partial v_j}{\partial x_i})+\frac{1}{2}((\frac{\partial v_i}{\partial...
##U_1 \otimes U_2 = (1- i H_1 \ dt) \otimes (1- i H_2 \ dt)##
We can write ## | \phi_i(t) > \ = U_i(t) | \phi_i(0)>## where i can be 1 or 2 depending on the subsystem. The ## U ##'s are unitary time evolution operators.
Writing as tensor product we get
## |\phi_1 \phi_2> = (1- i H_1 \ dt) |...
The elecromagnetic force can be expressed using the Maxwell Stress Tensor as:
$$\vec F = \oint_{s} \vec T \cdot d \vec a - \epsilon \mu \frac{\partial }{\partial t} \oint_{V} \vec S d\tau $$
(How can I make the double arrow for the stress tensor ##T##?)
In the static case, the second term...
I am trying to get an intuition of what a metric is. I understand the metric tensor has many functions and is fundamental to Relativity. I can understand the meaning of the flat space Minkowski metric ημν, but gμν isn't clear to me. The Minkowski metric has a trace -1,1,1,1 with the rest being...