Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Zfc
Recent contents
View information
Top users
Description
In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.
Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a hereditary well-founded set, so that all entities in the universe of discourse are such sets. Thus the axioms of Zermelo–Fraenkel set theory refer only to pure sets and prevent its models from containing urelements (elements of sets that are not themselves sets). Furthermore, proper classes (collections of mathematical objects defined by a property shared by their members where the collections are too big to be sets) can only be treated indirectly. Specifically, Zermelo–Fraenkel set theory does not allow for the existence of a universal set (a set containing all sets) nor for unrestricted comprehension, thereby avoiding Russell's paradox. Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes.
There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets. For example, the axiom of pairing says that given any two sets
a
{\displaystyle a}
and
b
{\displaystyle b}
there is a new set
{
a
,
b
}
{\displaystyle \{a,b\}}
containing exactly
a
{\displaystyle a}
and
b
{\displaystyle b}
. Other axioms describe properties of set membership. A goal of the axioms is that each axiom should be true if interpreted as a statement about the collection of all sets in the von Neumann universe (also known as the cumulative hierarchy). Formally, ZFC is a one-sorted theory in first-order logic. The signature has equality and a single primitive binary relation, set membership, which is usually denoted
∈
{\displaystyle \in }
. The formula
a
∈
b
{\displaystyle a\in b}
means that the set
a
{\displaystyle a}
is a member of the set
b
{\displaystyle b}
(which is also read, "
a
{\displaystyle a}
is an element of
b
{\displaystyle b}
" or "
a
{\displaystyle a}
is in
b
{\displaystyle b}
").
The metamathematics of Zermelo–Fraenkel set theory has been extensively studied. Landmark results in this area established the logical independence of the axiom of choice from the remaining Zermelo-Fraenkel axioms (see Axiom of choice § Independence) and of the continuum hypothesis from ZFC. The consistency of a theory such as ZFC cannot be proved within the theory itself, as shown by Gödel's second incompleteness theorem.
View More On Wikipedia.org
Forums
Back
Top