- #1
karush
Gold Member
MHB
- 3,269
- 5
$\textsf{Find the volume of the given solid region bounded by the cone}$
$$\displaystyle z=\sqrt{x^2+y^2}$$
$\textsf{and bounded above by the sphere}$
$$\displaystyle x^2+y^2+z^2=128$$
$\textsf{ using triple integrals}$
\begin{align*}\displaystyle
V&=\iiint\limits_{R}p(x,y,z) \, dV
\end{align*}
ok I don't think I can get the Integral set up the way the equations are written
I assume we break it up into $x=, y=$ and $z=$
\begin{align*}\displaystyle
z_{cone}&=\sqrt{x^2+y^2}\\
z^2&=x^2+y^2\\
x^2&=z^2-y^2\\
\therefore x_{cone}&=\sqrt{z^2-y^2}\\
y^2&=z^2-x^2\\
\therefore y_{cone}&=\sqrt{z^2-x^2}
\end{align*}.
$$\displaystyle z=\sqrt{x^2+y^2}$$
$\textsf{and bounded above by the sphere}$
$$\displaystyle x^2+y^2+z^2=128$$
$\textsf{ using triple integrals}$
\begin{align*}\displaystyle
V&=\iiint\limits_{R}p(x,y,z) \, dV
\end{align*}
ok I don't think I can get the Integral set up the way the equations are written
I assume we break it up into $x=, y=$ and $z=$
\begin{align*}\displaystyle
z_{cone}&=\sqrt{x^2+y^2}\\
z^2&=x^2+y^2\\
x^2&=z^2-y^2\\
\therefore x_{cone}&=\sqrt{z^2-y^2}\\
y^2&=z^2-x^2\\
\therefore y_{cone}&=\sqrt{z^2-x^2}
\end{align*}.
Last edited: