- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{243.14.7.4}$
Find all local extreme values of the given function and
identify each as a local maximum,local minimum,or saddlepoint
\begin{align*} \displaystyle
f_4(x,y)&=x^2+14x+y^2-12y+5\\
\end{align*}
saw this in the section
$\text{if we substitute the values} \\$
$\text{$f_xCa, b) = 0$ and $f_y(a, b) = 0$}\\$
$\text{ into the equation both zero.}\\$
$\text{ $f_x(a, b)(x - a)+f_y(a, b)(y - b) - (z - f(a, b)) = 0$ } $
ok i haven't done this before so kinda lost
read the section on but didn't get the derivatives
answer
$\color{red}{f_4(-7,6)}=\color{red}{-80}\\$
$\color{red}{\textit{local minimum}}$
Find all local extreme values of the given function and
identify each as a local maximum,local minimum,or saddlepoint
\begin{align*} \displaystyle
f_4(x,y)&=x^2+14x+y^2-12y+5\\
\end{align*}
saw this in the section
$\text{if we substitute the values} \\$
$\text{$f_xCa, b) = 0$ and $f_y(a, b) = 0$}\\$
$\text{ into the equation both zero.}\\$
$\text{ $f_x(a, b)(x - a)+f_y(a, b)(y - b) - (z - f(a, b)) = 0$ } $
ok i haven't done this before so kinda lost
read the section on but didn't get the derivatives
answer
$\color{red}{f_4(-7,6)}=\color{red}{-80}\\$
$\color{red}{\textit{local minimum}}$
Last edited: