2D Motion Finding the resultant using components

AI Thread Summary
The discussion revolves around calculating the resultant displacement of a person's movement using vector components. The individual initially calculated a total displacement of 237m at an angle of W16 degrees N, while the textbook answer is 230m at N23 degrees W. Key issues identified include misinterpretation of angle conventions and the importance of correctly breaking down vector components without finding their complements. Suggestions were made to visualize the problem with triangles representing displacements and to sum the x- and y-components directly. The conversation highlights the common pitfalls in vector analysis and emphasizes clarity in angle measurements.
Madara Uchiha
Messages
6
Reaction score
0

Homework Statement



A person walks 20m [N20(degrees)E], then 120m [N50(degrees)W], then 150m[W], and finally 30m [S75(degrees)E]. Find the person's final displacement.




Homework Equations



Is my solution correct? The textbook answers are 230m[N23(degrees)W]
What did I do incorrect? Explain please :/ :(



The Attempt at a Solution



*Horizontal Component*
(20m)cos70
-(120m)cos40
-150m
(30m)cos75


Total for horizontal component: -227m


*Vertical Component*
(20m)sin70
(120m)sin40
0
-(30m)sin75

Total for vertical component: 67m


Total displacement = sqrt(-227m^2)+(67m^2)
=237m

Direction: tan^-1(67m/227m)
=16.4


Answer= 237m[W16(degrees)N]
 
Physics news on Phys.org
c'mon someone must be here

D:
 
When you say "[N20(degrees)E]" do you mean 20 degrees North of East?
 
physicsvalk said:
When you say "[N20(degrees)E]" do you mean 20 degrees North of East?

yes

it basically says [N20E]

Expect the 20 has a degree subscript. I suck with reading degree's
 
It seems like you're first finding the compliment of the angle before you're breaking down the vector. If you do this, note that you're looking at the opposite angle and then the sine/cosine convention would change.

EDIT:
Try solving the problem by leaving the angles (instead of finding the compliment - which would just make things harder) they way they are and drawing out triangles to represent displacements in the x- and y-direction. Then, after you break down all of them, sum each x- and y- and take the vector sum.
 
Last edited:
physicsvalk said:
It seems like you're first finding the compliment of the angle before you're breaking down the vector. If you do this, note that you're looking at the opposite angle and then the sine/cosine convention would change.

EDIT:
Try solving the problem by leaving the angles (instead of finding the compliment - which would just make things harder) they way they are and drawing out triangles to represent displacements in the x- and y-direction. Then, after you break down all of them, sum each x- and y- and take the vector sum.

what do you mean?

My solution looks right...
I'm only off by 7m for the displacement but for the notation I got 16 degrees but it should be 23, idk how I'm off by that much.


Did you do the solution? :s
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...

Similar threads

Back
Top