2nd order non-linear homogeneous differential equation

byrnesj1
Messages
7
Reaction score
0

Homework Statement


Find a solution (Z2) of:
z'' + 2z - 6(tanh(t))2z = 0

that is linearly independent of Z1 = sech2

Homework Equations


The Attempt at a Solution


reduction of order gives you

v''(t)(Z1(t))+v'(t)(2 * Z1'(t)) + v(t)(Z1''(t)+p(t)Z1'(t)) = 0
however the third term on the LHS can be dropped since we know that Z1 is a solution to the original problem.

v''(t)(Z1(t))+v'(t)(2 * Z1'(t)) = 0 = sech2(t)v''(t) + 2(-2tanh2(t)sech2(t))v'(t)

let y = v'

sech2(t)y'(t) + 2(-2tanh2(t)sech2(t))y(t) = 0

divide both sides by sech2(t)

y'(t) - 4tanh2(t)y(t) = 0

from here would I use integrating factor, or should I have done exact equations for the step before this?

using integrating factor
μ(t) = e(4tanh(t)-4t)
y = e-(4tanh(t)-4t)
v = ∫e-(4tanh(t)-4t)dt

can any1 point me in the correct direction? I also don't know how to integrate the last part..
 
Last edited:
Physics news on Phys.org
byrnesj1 said:

Homework Statement


Find a solution (Z2) of:
z'' + 2z - 6(tanh(t))2z = 0

that is linearly dependent of Z1 = sech2


Homework Equations





The Attempt at a Solution


reduction of order gives you

v''(t)(Z1(t))+v'(t)(2 * Z1'(t)) + v(t)(Z1''(t)+p(t)Z1'(t)) = 0
however the third term on the LHS can be dropped since we know that Z1 is a solution to the original problem.

v''(t)(Z1(t))+v'(t)(2 * Z1'(t)) = 0 = sech2(t)v''(t) + 2(-2tanh2(t)sech2(t))v'(t)

let y = v'

sech2(t)y'(t) + 2(-2tanh2(t)sech2(t))y(t) = 0

divide both sides by sech2(t)

y'(t) - 4tanh2(t)y(t) = 0

from here would I use integrating factor, or should I have done exact equations for the step before this?

using integrating factor
μ(t) = e(4tanh(t)-4t)
y = e-(4tanh(t)-4t)
v = ∫e-(4tanh(t)-4t)dt

can any1 point me in the correct direction? I also don't know how to integrate the last part..


Check the derivative of sech2(t).

ehild
 
ahh that works beautifully. thanks ehild.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top