Uniform radial electric field?

Click For Summary
The discussion focuses on the concept of uniform electric fields and charge distributions in electrodynamics, particularly the implications of a uniform radial electric field. It highlights the mathematical idealization of uniform charge distributions, such as a uniformly charged sphere, and uses Gauss's Law to derive the electric field inside and outside the sphere. The conversation raises questions about the physical existence of such charge distributions, especially as charge density approaches infinity at the origin, and the challenges in creating them. Additionally, it touches on the relationship between charge density and total charge, noting that while density may become infinite, the total charge remains finite. The discussion concludes with a reference to Dirac's delta function as a relevant concept in addressing these issues.
maurits
Messages
2
Reaction score
0
In textbooks or other texts that discuss electrodynamics at some point always the term 'uniform' is introduced to describe particularly simple (symmetric) charge distributions, electric fields, etc.

In trying to imagine what a uniform charge distribution - which, of course, is a mathematical idealization - looks like in nature, I quickly end up at an image of many charges (electrons) sitting next to each other at a certain distance. They may form a string, cover a surface or fill up a volume, thereby creating a uniform line, surface or volume charge density, respectively.

Using Gauss's Law to find a formulation for the electric field for the last case of a uniformly charged sphere, we see that for a sphere of radius R the field inside the sphere (r <= R) is

<br /> \vec{E} = \frac{1}{4\pi\epsilon_0}\frac{Qr}{R^3}\hat{r}<br />

Outside the sphere (r > R), it is
<br /> \vec{E} = \frac{1}{4\pi\epsilon_0}\frac{Q}{r^2}\hat{r}<br />

Hence, inside the uniformly charged sphere E is proportional to r, outside it E goes as the inverse square of r. This is nicely sketched at the bottom of http://www.2classnotes.com/digital_notes.asp?p=Electric_Field_due_to_a_Uniform_Sphere_of_Charge . Note that E points in the radial direction as indicated by the [texi]\hat{r}[/texi].

What if we consider a uniform electric field instead of a uniform charge distribution? A sketch similar to that linked to before should then consist of or contain a horizontal line.

A well-known example of a uniform electric field is the one produced by (between) two (infinite) parallel plates of opposite charge polarity. The electric field lines are perpendicular to the plates in this case.

As to investigate radial uniform electric fields, let's try to find the spherical charge distribution (of finite volume) that produces the field

<br /> \vec{E} = \frac{1}{4\pi\epsilon_0}\frac{Q}{R^2}\hat{r}<br />

within that sphere (r <= R). Outside the sphere, where we assume the charge density to be zero, the electric field will be the same as we found before.

Applying Gauss's Law again, this time to find the charge distribution, we get

<br /> \rho(r) = \frac{Q}{2\pi R^2}\frac{1}{r}<br />

valid for r <= R. It surprises me that the charge distribution goes as 1/r (please correct me if this is not the case at all) and several question popped up in my mind the moment I derived this result:
- As we approach the origin (r = 0) the charge density becomes higher and higher. What happens near or at the origin?
- Does a charge distribution like this exist in nature? Are we capable of making one in some way?
- Are any cases know in nature of uniform radial electric fields?

Thanks!
 
Last edited by a moderator:
Physics news on Phys.org
If the field is to be constant, the charge would have to increase in proportion to r^2. Since the volume increases in proportion to r^3, the charge density would have to decrease in proportion to 1/r. So that makes sense. The fact that this means charge density would have to increase without bound as you decrease r makes it very difficult or impossible to make.

AM
 
the charge density becomes infinite but the total amount of charge is still finite

the field at the origin would be zero
 
maurits said:
- As we approach the origin (r = 0) the charge density becomes higher and higher. What happens near or at the origin?
- Does a charge distribution like this exist in nature? Are we capable of making one in some way?
- Are any cases know in nature of uniform radial electric fields?

Thanks!

It is easier to see what's going on by calculating q(r) for r<R, this goes as r^2; the problem is really that density in a radial variable is not such an intuitive quantity
 
granpa said:
the charge density becomes infinite but the total amount of charge is still finite

the field at the origin would be zero

Ah, of course! This reminds me of Dirac's delta function, which, in the end, we always integrate. I remember the Dirac delta is also introduced in electrodynamics (cf. Griffiths' Introduction to Electrodynamics (3e) p. 50) to cater for the problem with the divergence of the E-field at r = 0.

dgOnPhys said:
It is easier to see what's going on by calculating q(r) for r<R, this goes as r^2; the problem is really that density in a radial variable is not such an intuitive quantity

Yes, my intuition indeed seems to falter, here. I guess it has to do with the problem you point out: how can we understand a density in a radial variable? Thanks! I'll also try to look into the approach concerning q(r).
 
Last edited:
I'm working through something and want to make sure I understand the physics. In a system with three wave components at 120° phase separation, the total energy calculation depends on how we treat them: If coherent (add amplitudes first, then square): E = (A₁ + A₂ + A₃)² = 0 If independent (square each, then add): E = A₁² + A₂² + A₃² = 3/2 = constant In three-phase electrical systems, we treat the phases as independent — total power is sum of individual powers. In light interference...

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
436
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K