MHB *8s6.12.7 Find the lengths of the ides of the triangle PQR

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Triangle
Click For Summary
The lengths of the sides of triangle PQR are calculated using the distance formula, resulting in PQ = 6, QR = √40, and RP = 6. This indicates that triangle PQR is isosceles, as two sides are equal. The calculations confirm that the triangle is not a right triangle since the Pythagorean theorem does not hold for these side lengths. The coordinates of the points are P(3, -2, -3), Q(7, 0, 1), and R(1, 2, 1). Thus, triangle PQR is classified as isosceles with specific side lengths.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{s6.12.7 Linkedin}$
a. Find the lengths of the ides of the triangle PQR.
b. Is it a right triangle? Is it an isosceles triangle?
$P(3,-2,-3), Q(7,0,1), R(1,2,1) PQ =\left|\sqrt{(3-7)^2 +(-2-0)^2+(-3-1)^2}\right|$
this is just an intro to vector calculus to get the basics of calc III
 
Last edited:
Mathematics news on Phys.org
I believe it is isosceles, with equal sides $6$ units and third side $2\sqrt{10}$ units.

Use (for example)

$$\left|\vec{PQ}\right|=\sqrt{(P_1-Q_1)^2+(P_2-Q_2)^2+(P_3-Q_3)^2}$$

Can you finish?
 
$\tiny{s6.12.7}\\$
$\textsf{7.Find the lengths of the ides of the triangle PQR.}\\$ $\textsf{Is it a right triangle? Is it an isosceles riangle?}
\\$ \begin{align}
&P(3, -2, -3), \; Q(7,0,1), \; R(1,2,1)\\
\left|\vec{PQ}\right|
&=\sqrt{(P_1-Q_1)^2+(P_2-Q_2)^2+(P_3-Q_3)^2}\\
&=\sqrt{(3-7)^2 +(-2-0)^2+(-3-1)^2}=6\\
\left|\vec{QR}\right|
&=\sqrt{(7-1)^2 +(0-2)^2+(-1-1)^2}=\sqrt{40}\\
\left|\vec{RP}\right|
&=\sqrt{(3-1)^2+(-2-2)^2+(-3-1)^2}=6
\end{align}
$\textit{isosceles}$
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K