MHB 9.25 a centrifuge takes up only 0.127 m of bench space

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Centrifuge Space
AI Thread Summary
The discussion centers on calculating the radius of a centrifuge that claims to occupy 0.127 m of bench space while producing a radial acceleration of 4100 g at 6830 rev/min. Participants note the need to convert the rotational speed from rpm to rad/sec for accurate calculations. Using the formula for radial acceleration, they derive that the calculated radius is approximately 0.0785 m, leading to a diameter of about 0.157 m. This diameter exceeds the claimed bench space, suggesting the advertisement's claim is inaccurate. The calculations highlight the importance of unit conversion and proper application of physics formulas in verifying claims.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{An advertisement claims that a centrifuge takes up only $0.127 m$ of bench space}$
$\textsf{but can produce a radial acceleration of $4100 \, g$ at $6830 \, rev/min$}$

$\textsf{a. Calculate the requested radius of the centrifuge}$

OK the only thing I can guess here is $\frac{0.127}{2}$ as max
 
Mathematics news on Phys.org
karush said:
$\textsf{An advertisement claims that a centrifuge takes up only $0.127 m$ of bench space}$
$\textsf{but can produce a radial acceleration of $4100 \, g$ at $6830 \, rev/min$}$

$\textsf{a. Calculate the requested radius of the centrifuge}$

OK the only thing I can guess here is $\frac{0.127}{2}$ as max

$a_r = r\omega^2 \implies r = \dfrac{a_r}{\omega^2}$

you'll need to convert $\omega$ given in rpm to rad/sec
 
skeeter said:
$a_r = r\omega^2 \implies r = \dfrac{a_r}{\omega^2}$

you'll need to convert $\omega$ given in rpm to rad/sec

$r = \dfrac{a_r}{\omega^2}\\$
$\textit {how do you cancel the units? }\\$
\begin{align}
\displaystyle
\frac{0.127 \, m}{2} &\ge \dfrac{4100 \, g}{(6830\cdot 2\pi\cdot 60)^2 \, rad/s}\\
0.0635&\ge \frac{4100 \, g}{6.629849 \, rad/s}\\
0.0635&\ge 6.184
\end{align}not!
 
Last edited:
$\dfrac{6830 \, rev}{min} \cdot \dfrac{2\pi \,rad}{rev} \cdot \dfrac{1 \min}{60 \,sec} = \dfrac{683\pi}{3} \, \dfrac{rad}{sec}$

$r = \left(4100g \, m/sec^2\right) \left(\dfrac{3}{683\pi} \, \dfrac{sec}{rad} \right)^2 \approx 0.0785 \, m$

$d = 2r \approx 0.157 \, m > 0.127 \, m$

seems their "claim" is false ...
 


$\dfrac{6830 \, rev}{min} \cdot \dfrac{2\pi \,rad}{rev} \cdot \dfrac{1 \min}{60 \,sec} = \dfrac{683\pi}{3} \, \dfrac{rad}{sec}$

where do you get

$$\dfrac{683\pi}{3}$$
 
Last edited:
$\dfrac{6830}{1} \cdot \dfrac{2\pi}{1} \cdot \dfrac{1}{60} = \dfrac{6830 \cdot 2\pi}{60} = \dfrac{6830 \cdot \pi}{30} = \dfrac{683 \cdot \pi}{3}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top